Celecoxib, a specific inhibitor of cycloxygenase-2 (COX-2) is a poorly water-soluble nonsteroidal anti-inflammatory drug with relatively low bioavailability. The effect of beta-cyclodextrin on the aqueous solubility and dissolution rate of celecoxib was investigated. The possibility of molecular arrangement of inclusion complexes of celecoxib and beta-cyclodextrin were studied using molecular modeling and structural designing. The results offer a better correlation in terms of orientation of celecoxib inside the cyclodextrin cavity. Phase-solubility profile indicated that the solubility of celecoxib was significantly increased in the presence of beta-cyclodextrin and was classified as A(L)-type, indicating the 1:1 stoichiometric inclusion complexes. Solid complexes prepared by freeze drying, evaporation, and kneading methods were characterized using differential scanning calorimetry, powder x-ray diffractometry, and scanning electron microscopy. In vitro studies showed that the solubility and dissolution rate of celecoxib were significantly improved by complexation with beta-cyclodextrin with respect to the drug alone. In contrast, freeze-dried complexes showed higher dissolution rate than the other complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750942PMC
http://dx.doi.org/10.1208/ps060107DOI Listing

Publication Analysis

Top Keywords

dissolution rate
12
complexes celecoxib
8
solubility dissolution
8
rate celecoxib
8
inclusion complexes
8
celecoxib
7
beta-cyclodextrin
5
complexes
5
beta-cyclodextrin complexes
4
celecoxib molecular-modeling
4

Similar Publications

We present a model to describe the concentration-dependent growth of protein filaments. Our model contains two states, a low entropy/high affinity ordered state and a high entropy/low affinity disordered state. Consistent with experiments, our model shows a diffusion-limited linear growth regime at low concentration, followed by a concentration-independent plateau at intermediate concentrations, and rapid disordered precipitation at the highest concentrations.

View Article and Find Full Text PDF

The dissolution/diffusion process of solid in a liquid is a kind of widespread physical phenomenon. Parameters involved in this process include the dissolution rate (), dissolution rate constant (), and diffusion coefficient (), whose accurate measurement is particularly important in fields such as biopharmaceuticals, materials science, agriculture, etc. However, the commonly used measurement methods at present cannot obtain these parameters simultaneously.

View Article and Find Full Text PDF

Vitamin B2 Operates by Dual Thermodynamic and Kinetic Mechanisms to Selectively Tailor Urate Crystallization.

J Am Chem Soc

January 2025

Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.

Here we demonstrate how a biologically relevant molecule, riboflavin (vitamin B2), operates by a dual mode of action to effectively control crystallization of ammonium urate (NHHU), which is associated with cetacean kidney stones. In situ microfluidics and atomic force microscopy experiments confirm a strong interaction between riboflavin and NHHU crystal surfaces that substantially inhibits layer nucleation and spreading by kinetic mechanisms of step pinning and kink blocking. Riboflavin does not alter the distribution of tautomeric urate isomers, but its adsorption on NHHU crystal surfaces does interfere with the effects of minor urate tautomer by limiting its ability to induce NHHU crystal defects while also suppressing NHHU nucleation and inhibiting crystal growth by 80% at an uncharacteristically low modifier concentration.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

High Entropy Fine-Tuning Achieves Fast Li Kinetics in High-Performance Co-Free High-Ni Layered Cathodes.

Adv Mater

January 2025

Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.

Co-free high-Ni layered cathode materials LiNiMeO (Me = Mn, Mg, Al, etc.) are a key part of the next-generation high-energy lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the hindered Li kinetics and the high reactivity of Ni result in poor rate performance and unsatisfied cycling stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!