S. cerevisiae responds to the presence of amino acids in the environment through the membrane-bound complex SPS, by altering transcription of several genes. Global transcription analysis shows that 46 genes are induced by L-citrulline. Under the given conditions there appears to be only one pathway for induction with L-citrulline, and this pathway is completely dependent on the SPS component, Ssy1p, and either of the transcription factors, Stp1p and Stp2p. Besides the effects on amino acid permease genes, an ssy1 and an stp1 stp2 mutant exhibit a number of other transcriptional phenotypes, such as increased expression of genes subject to nitrogen catabolite repression and genes involved in stress response. A group of genes involved in the upper part of the glycolysis, including those encoding hexose transporters Hxt4p, Hxt5p, Hxt6p, Hxt7p, hexokinase Hxk1p, glyceraldehyde 3-phosphate dehydrogenase Tdh1p and glucokinase (Glk1p), shows increased transcription levels in either or both of the mutants. Also, most of the structural genes involved in trehalose and glycogen synthesis and a few genes in the glyoxylate cycle and the pentose phosphate pathway are derepressed in the ssy1 and stp1 stp2 strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.1120 | DOI Listing |
Curr Atheroscler Rep
January 2025
Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.
Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.
View Article and Find Full Text PDFAmino Acids
January 2025
Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!