To identify neuronal substrates involved in NO/stress interactions we used Fos expression as a marker and examined the pattern of neuronal activation in response to swim stress in nNOS knock-out (nNOS-/-) and wild-type (WT) mice. Forced swimming enhanced Fos expression in WT and nNOS-/- mice in several brain regions, including cortical, limbic and hypothalamic regions. Differences in the Fos response between the two groups were observed in a limited set (6 out of 42) of these brain areas only: nNOS-/- mice displayed increased stressor-induced Fos expression in the medial amygdala, periventricular hypothalamic nucleus, supraoptic nucleus, CA1 field of the hippocampus, dentate gyrus and infralimbic cortex. No differences were observed in regions including the septum, central amygdala, periaqueductal grey and locus coeruleus. During forced swimming, nNOS-/- mice displayed reduced immobility duration, while no differences in general locomotor activity were observed between the groups in the home cage and during the open field test. The findings indicate that deletion of nNOS alters stress-coping ability during forced swimming and leads to an altered pattern of neuronal activation in response to this stressor in specific parts of the limbic system, hypothalamus and the medial prefrontal cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138645 | PMC |
http://dx.doi.org/10.1007/s00018-004-4140-x | DOI Listing |
Phytomedicine
January 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Changle West Street 15, Xi'an, Shaanxi, 710032, China. Electronic address:
Background: The pathogenesis of neuropathic pain is complex and lacks effective clinical treatment strategies. Medical plants and herbal extracts from traditional Chinese medicine with multi-target comprehensive effects have attracted great attention from scientists.
Purpose: To investigate the pharmacological active components and mechanism underlying the anti-neuralgia effect of classic analgesic formulas Duhuo Jisheng Mixture (DJM).
Nutrients
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
A fucoidan oligosaccharide (FOS), a potent compound derived from algae, is known for its diverse biological activities, including prebiotic activity, anticancer activity, and antioxidative properties, and has demonstrated supportive therapeutic effects in treating kidney ailments. This study was conducted to explore the protective influence of FOS on kidney damage due to aging induced by D-galactose in Sprague Dawley (SD) rats. The low-dose FOS group was administered FOS (100 mg/kg) by gavage, and the high-FOS group received FOS (200 mg/kg) by gavage.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy.
The rising global focus on healthy lifestyles and environmental sustainability has prompted interest in repurposing plant-based by-products for health benefits. With increasing life expectancy, the incidence of neurodegenerative diseases-characterized by complex, multifactorial mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress, and inflammation-continues to grow. Medicinal plants, with their diverse bioactive compounds, offer promising therapeutic avenues for such conditions.
View Article and Find Full Text PDFChin J Nat Med
January 2025
The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China. Electronic address:
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!