Nuclear factor kappaB (NF-kappaB) is a eukaryotic transcription factor which responds to different extracellular signals. It is involved in immune response, inflammation, and cell proliferation. Increased expression of c-Rel (or its viral homolog v-Rel), one component of the NF-kappaB factors, induces tumorigenesis in different systems. The activity of NF-kappaB can be regulated by protein kinase A (PKA) in a cAMP-independent manner. Our previous results showed that c-MYC induces the activity of PKA by inducing the transcription of the gene encoding the PKA catalytic subunit beta (PKA-Cbeta). Constitutive expression of PKA-Cbeta in Rat1a cells induces their transformation. Here we show that CREB is unlikely to be a phosphorylation target of PKA-Cbeta as characterized by different cell lines. Electrophoretic mobility shift assays showed that c-Rel is present as a significant component of the NF-kappaB factors in c-MYC overexpressing status. The transcriptional activity of c-Rel was significantly stimulated by PKA-Cbeta. Coactivators p300/CBP are at least partially responsible for the enhanced activation mediated by c-Rel and PKA-Cbeta. Interaction between c-Rel and PKA-Cbeta was demonstrated using coimmunoprecipitation assays. Immunoprecipitation-in vitro phosphorylation assays showed the direct phosphorylation of c-Rel by PKA-Cbeta. These results indicate that c-Rel is a reasonable phosphorylation target of PKA-Cbeta, and that the transcriptional activity of c-Rel is stimulated by PKA-Cbeta possibly through the interaction with p300/CBP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-004-0559-7DOI Listing

Publication Analysis

Top Keywords

transcriptional activity
12
c-rel pka-cbeta
12
pka-cbeta
9
activity pka
8
pka catalytic
8
catalytic subunit
8
subunit beta
8
c-rel
8
component nf-kappab
8
nf-kappab factors
8

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

ZAP is an antiviral protein that binds to and depletes viral RNA, which is often distinguished from vertebrate host RNA by its elevated CpG content. Two ZAP cofactors, TRIM25 and KHNYN, have activities that are poorly understood. Here, we show that functional interactions between ZAP, TRIM25 and KHNYN involve multiple domains of each protein, and that the ability of TRIM25 to multimerize via its RING domain augments ZAP activity and specificity.

View Article and Find Full Text PDF

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!