Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus.

Proc Natl Acad Sci U S A

Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1.

Published: June 2004

New neurons are generated in adult mammalians and may contribute to repairing the brain after injury. Here, we show that the number of new neurons in the dentate gyrus of adult rats increased in cerebral ischemic stroke and correlated with activation of the cAMP-response-element-binding protein (CREB). Inhibition of endogenous CREB by expression of a dominant-negative mutant of CREB (CREB-S133A or CREB-R287L) blocked ischemia-induced neurogenesis in the dentate gyrus of adult rats, whereas expression of constitutively active CREB, VP16-CREB, increased the number of new neurons. Thus, our findings provide roles and regulatory mechanisms for CREB in adult neurogenesis and possibly suggest a practical strategy for replacing dead neurons in brain injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC438997PMC
http://dx.doi.org/10.1073/pnas.0401063101DOI Listing

Publication Analysis

Top Keywords

dentate gyrus
12
activation camp-response-element-binding
8
camp-response-element-binding protein
8
protein creb
8
brain injury
8
number neurons
8
gyrus adult
8
adult rats
8
creb
6
adult
5

Similar Publications

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Towards an Understanding of the Dentate Gyrus Hilus.

Hippocampus

January 2025

Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.

For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).

View Article and Find Full Text PDF

Background: An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response.

Methods: We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels.

View Article and Find Full Text PDF

Accumulating evidence indicates that inherited astrocyte dysfunction can be a primary trigger for epilepsy development; however, the available data are rather limited. In addition, astrocytes are considered as a perspective target for the design of novel and improvement of the existing antiepileptic therapy. Piracetam and related nootropic drugs are widely used in the therapy of various epileptic disorders, but detailed mechanisms of racetams action and, in particular, their effects on glial functions are poorly understood.

View Article and Find Full Text PDF

In the mammalian brain, new neurons continue to be generated throughout life in a process known as adult neurogenesis. The role of adult-generated neurons has been broadly studied across laboratories, and mounting evidence suggests a strong link to the HPA axis and concomitant dysregulations in patients diagnosed with mood disorders. Psychedelic compounds, such as phenethylamines, tryptamines, cannabinoids, and a variety of ever-growing chemical categories, have emerged as therapeutic options for neuropsychiatric disorders, while numerous reports link their effects to increased adult neurogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!