Fibroblast growth factors (Fgfs) play important roles in the pattern formation of early vertebrate embryos. We have identified a zebrafish ortholog of human FGF17, named fgf17b. The first phase of fgf17b expression occurs in the blastodermal margin of late blastulae and in the embryonic shield of early gastrulae. The second phase starts after the onset of segmentation, mainly in the presomitic mesoderm and newly formed somites. Injection of fgf17b mRNA into one-cell embryos induces expression of the mesodermal marker no tail (ntl) and rescues ntl expression suppressed by overexpression of lefty1 (lft1). Overexpression of fgf17b dorsalizes zebrafish gastrulae by enhancing expression of chordin (chd), which is an antagonist of the ventralizing signals BMPs. In addition, overexpression of fgf17b posteriorizes the neuroectoderm. Simultaneous knockdown of fgf17b and fgf8 with antisense morpholinos results in reduction of chd and ntl. Knockdown of fgf17b can alleviate inhibitory effect of ectopic expression of fgf3 on otx1. These data together suggest that Fgf17b plays a role in early embryonic patterning. We also demonstrate that fgf17b and fgf8 have stronger mesoderm inducting activity than fgf3, whereas fgf17b and fgf3 have stronger activity in posteriorizing the neuroectoderm than fgf8. Like fgf8, activation of fgf17b expression depends on Nodal signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2004.03.032 | DOI Listing |
Differentiation
December 2024
School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa. Electronic address:
The Fibroblast growth factor (FGFs) family consists of at least 22 members that exert their function by binding and activating fibroblast growth factor receptors (FGFRs). The Fgf8/FgfD subfamily member, Fgf17, is located on human chromosome 8p21.3 and mouse chromosome 14 D2.
View Article and Find Full Text PDFGene Expr Patterns
June 2023
Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. Electronic address:
Adult zebrafish regenerate their appendages (fins) after amputation including the regeneration of bone structures (fin rays). Fibroblast growth factor (Fgf) signaling, which is involved in morphogenetic processes during development, has been shown to be essential for the process of fin regeneration. Moreover, mutations in Fgf pathway component genes lead to abnormal skeletal growth in teleosts and mammals, including humans, illustrating the importance of Fgf signaling in the growth control of tissues.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
December 2007
Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, USA.
Fibroblast growth factors play critical roles in many aspects of embryo patterning that are conserved across broad phylogenetic distances. To help understand the evolution of fibroblast growth factor functions, we identified members of the Fgf8/17/18-subfamily in the three-spine stickleback Gasterosteus aculeatus, and investigated their evolutionary relationships and expression patterns. We found that fgf17b is the ortholog of tetrapod Fgf17, whereas the teleost genes called fgf8 and fgf17a are duplicates of the tetrapod gene Fgf8, and thus should be called fgf8a and fgf8b.
View Article and Find Full Text PDFCell
November 2006
Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
Zebrafish possess a unique yet poorly understood capacity for cardiac regeneration. Here, we show that regeneration proceeds through two coordinated stages following resection of the ventricular apex. First a blastema is formed, comprised of progenitor cells that express precardiac markers, undergo differentiation, and proliferate.
View Article and Find Full Text PDFDev Dyn
November 2006
State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China.
The neuroectoderm is patterned along the anterior-posterior axis in vertebrate embryos. Fgf signals are required to induce the posterior neuroectodermal fates, but they repress the anterior fate. Sp5l/Spr2, an Sp1-like transcription factor family member, has been shown to be required for development of mesoderm and posterior neuroectoderm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!