Phosphorylation of ezrin on threonine T567 plays a crucial role during compaction in the mouse early embryo.

Dev Biol

Laboratoire de Biologie Cellulaire du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, 9 Quai St-Bernard, 75252 Paris cedex 05, France.

Published: July 2004

The preimplantation development of the mouse embryo leads to the divergence of the first two cell lineages, the inner cell mass and the trophectoderm. The formation of a microvillus pole during compaction at the eight-cell stage and its asymmetric inheritance during mitosis are key events in the emergence of these two cell populations. Ezrin, a member of the ERM protein family, seems to be involved in the formation and stabilization of this apical microvillus pole. To further characterize its function in early development, we mutated the key residue T567, which was reported to be essential for regulation of ezrin function through phosphorylation. Here, we show that expression of ezrin mutants in which the COOH-terminal threonine T567 was replaced by an aspartate (to mimic a phosphorylated residue; T567D) or by an alanine (to avoid phosphorylation; T567A) interferes with E-cadherin function and disrupts the first morphogenetic events of development: compaction and cavitation. The active mutant ezrin-T567D induces the formation of numerous and abnormally long microvilli at the surface of blastomeres. Moreover, it localizes all around the cell cortex and inhibits cell-cell adhesion and cell polarization at the eight-cell stage. During the following stages, only half of the embryos are able to compact and finally to cavitate. In those embryos, the amount of ezrin-T567D decreases in the basolateral areas, while the proportion of adherens junctions increases. The reverse inactive mutant ezrin-T567A is mainly cytoplasmic and does not perturb compaction at the eight-cell stage. However, at the 16-cell stage, it relocalizes at the basolateral cortex, leading to a strong decrease in the surface of adherens junctions, and finally, embryos abort development. Our results show that ezrin is directly involved in the formation of microvilli in the early mouse embryo. Moreover, they indicate that maintenance of ezrin in basolateral areas prevents microvilli breakdown and inhibits the formation of normal cell-cell contacts mediated by E-cadherin, thereby impairing blastomeres polarization and morphogenesis of the blastocyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2004.03.024DOI Listing

Publication Analysis

Top Keywords

eight-cell stage
12
threonine t567
8
mouse embryo
8
microvillus pole
8
compaction eight-cell
8
involved formation
8
basolateral areas
8
adherens junctions
8
cell
5
formation
5

Similar Publications

Purpose: Previous studies have suggested a link between serum progesterone levels on the day of the HCG trigger in IVF cycles and oocyte and embryo quality. This study aims to explore this relationship more thoroughly.

Methods: This study included 496 infertility patients at Moloud Infertility Treatment Center, Zahedan, Iran.

View Article and Find Full Text PDF

In Brief: This study investigates the role of TH2B in pre-implantation embryos and found that TH2B deposition varies between gametes but rapidly redistributes in two-cell embryos after fertilization. Our ultra-low-input native chromatin immunoprecipitation and sequencing (ULI-NChIP-seq) revealed that TH2B is enriched in early chromatin but decreases after the two-cell stage, with strong correlations to key regulatory regions, histone modifications and transposable elements (TEs), indicating its critical role in zygotic genome activation and early developmental processes.

Abstract: The histone variant TH2B, enriched in oocytes, sperm and early embryos, decreases as embryos differentiate into pre-gastrula stages.

View Article and Find Full Text PDF

For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data.

View Article and Find Full Text PDF

Background: Ductal carcinoma in situ (DCIS) of the breast is an early stage of breast cancer, and preventing its progression to invasive ductal carcinoma (IDC) is crucial for the early detection and treatment of breast cancer. Although single-cell transcriptome analysis technology has been widely used in breast cancer research, the biological mechanisms underlying the transition from DCIS to IDC remain poorly understood.

Results: We identified eight cell types through cell annotation, finding significant differences in T cell proportions between DCIS and IDC.

View Article and Find Full Text PDF

is dispensable for zygotic genome activation but essential for morula development.

Science

October 2024

Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France.

Early embryogenesis is driven by transcription factors (TFs) that first activate the zygotic genome and then specify the lineages constituting the blastocyst. Although the TFs specifying the blastocyst's lineages are well characterized, those playing earlier roles remain poorly defined. Using mouse models of the TF , we show that embryos arrest at the early morula stage and exhibit altered lineage specification, frequent mitotic failure, and substantial chromosome segregation defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!