We present a boy with a rare unbalanced translocation 46,XY,-15,+der(22),t(15;22)(q13;q11) pat. Previous reports of similar chromosome findings mention only the Prader-Willi phenotype. At birth, his manifestations included severe hypotonia and lethargy, (typical of deletion of 15pter----q13); hypertelorism, down-slanting small palpebral fissures, preauricular tags, long philtrum (typical of duplication of 22pter----q11); severe laryngotracheomalacia, and proximal implantation of the thumb. In a review of the literature on chromosome abnormalities involving duplication of 22q11 the associated clinical phenotype consists of mild mental retardation, microcephaly, hypotonia, hypertelorism, down-slanting palpebral fissures, a long philtrum, cleft or highly arched palate, and ear abnormalities. Preauricular pits or tags are common. Cardiovascular defects, renal and genital problems and dislocated hips are frequently present. Anal atresia and colobomata are mainly seen in cat-eye syndrome, the phenotype associated with idic 22q11. Our findings indicate that patients with unbalanced t(15;22) can have manifestations of the dup 22q11, in addition to the previously reported Prader-Willi phenotype, even if the duplicated segment is small.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.1320440107 | DOI Listing |
Sci Rep
January 2025
Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 318 Bayi Avenue, Nanchang, 330006, China.
To explore the genetic cause of a four-generation severe intellectual disability in a Chinese family using nanopore sequencing and to provide genetic counseling and reproductive guidance for family members. Multiple genetic analyses of the proband and family members were performed, including chromosome karyotype analysis, whole exome sequencing, nanopore sequencing, PCR amplification, and Sanger sequencing. The results of G-binding karyotyping, CGG repeats for FMR1, GGC repeats for NOTCH2NCL, and trio-whole-exome sequencing were negative for the proband and his parents.
View Article and Find Full Text PDFBackground: Congenital cardiac defects are defined in cases with the deletion of the short arm of chromosome 5 and the duplication of the long arm of chromosome 4. Septal defects and patent ductus arteriosus are among the most common defects reported in the literature.
Case: We reported on a case with a complex congenital cardiac defect, dysmorphic facial features, cat-like cry, hypotonia, hyporeflexia, weak swallowing and sucking, limb anomalies, and bilateral undescended testicles.
J Biol Chem
January 2025
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA. Electronic address:
Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) by (i) increasing KTR size, which reduces the confounding effect of KTR diffusion through the nuclear pore, and (ii) modulating the strength of the bipartite nuclear localization signal (bNLS) in their kinase sensor domains, to ensures that the relative distribution of the KTR between the nucleus and cytoplasmic is determined by active nuclear import, active nuclear export, and relative activity of their cognate kinase. The resultant sets of ePKA-KTRs and eERK-KTRs display high sensitivity, broad dynamic range, and cell type-specific tuning.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.
View Article and Find Full Text PDFClin Chem
January 2025
Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.
Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!