Background: Important phylogenetic differences between pig and human tissues prevent xenotransplantation from becoming a clinically feasible option. Humans lack the galactose-alpha1,3-galactose (alphaGal) epitope on endothelial cell surfaces and therefore have preformed anti-alphaGal antibodies. The role of these antibodies in rejection of non-vascular xenografts remains controversial. This study investigated the role of anti-alphaGal antibodies in rejection of non-vascularized alphaGal+/+ grafts in alphaGal -/- mice.

Methods: alphaGal +/+ and alphaGal -/- pancreatic islets were transplanted under the renal capsule of streptozotocin-induced diabetic (1) alphaGal -/- mice and (2) alphaGal +/+ mice. alphaGal -/- recepients were immunized with rabbit red blood cell membranes (RRBCs) to produce elevated anti-alphaGal antibody levels.

Results: Six of the 18 alphaGal -/- mice rejected the alphaGal +/+ grafts within 68 days whereas indefinite graft survival was achieved in the control groups. Animals with surviving islet grafts were challenged with alphaGal +/+ skin grafts. Although all alphaGal +/+ skin grafts were rejected within 58 days, the islet grafts remained intact. This observation correlated with the level of alphaGal expression (which was very low on islets compared to skin) rather than the actual titre of anti-alphaGal antibody.

Discussion: The results suggest that the level of alphaGal expression plays an important role in graft survival. Therefore, its removal is important in the development of a pig islet donor for future clinical therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3089.2004.00138.xDOI Listing

Publication Analysis

Top Keywords

alphagal +/+
24
alphagal -/-
20
alphagal
14
islet grafts
12
anti-alphagal antibodies
8
antibodies rejection
8
grafts alphagal
8
-/- mice
8
mice alphagal
8
graft survival
8

Similar Publications

Fabry disease (FD) is a rare disorder resulting from a genetic mutation characterized by the accumulation of sphingolipids in various cells throughout the human body, leading to progressive and irreversible organ damage, particularly in males. Genetically-determined deficiency or reduced activity of the enzyme (alpha - Galactosidase; α-Gal) leads to the accumulation of sphingolipids in the lysosomes of various cell types, including the heart, kidneys, skin, eyes, central nervous system, and digestive system, triggering damage, leading to the failure of vital organs, and resulting in progressive disability and premature death. FD diagnostics currently depend on costly and time-intensive genetic tests and enzymatic analysis, often leading to delayed or inaccurate diagnoses, which contribute to rapid disease progression.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

Background And Objectives: Salivary glands proteins but not glycoconjugates have been previously studied in mosquito vectors of human diseases. Glycoconjugates from salivary gland-derived proteins from human-feeding tick vectors can elicit hypersensitivity reactions which may also occur with mosquito bites. Protein glycoconjugate in salivary glands of the principal arboviral vector Aedes aegypti and the rapidly spreading malaria vector Anopheles stephensi were therefore investigated.

View Article and Find Full Text PDF

Insight into distribution and composition of nonhuman N-Glycans in mammalian organs via MALDI-TOF and MALDI-MSI.

Carbohydr Polym

March 2025

Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!