The delayed-rectifier potassium current (IKDR) is important in repolarizing the membrane potential and determining the level of neuronal excitability. We investigated the effect of cadmium on this potassium current. The whole-cell patch-clamp technique was used to measure IKDR from cultured Drosophila neurons derived from embryonic neuroblasts. The current was measured from neurons before and after the application of 0.1 mM cadmium to the external saline. IKDR was similar in the cadmium-containing saline (383 +/- 47 pA) and the control saline (401 +/- 60 pA). These results indicate that cadmium neurotoxicity does not specifically affect IKDR in Drosophila neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207450490422795 | DOI Listing |
Vision Res
January 2025
Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, A Coruña 15006, Spain. Electronic address:
Nanoceria, or cerium dioxide nanoparticles (CeO NP), are increasingly employed in a number of industrial and commercial applications. Hence, the environmental presence of these nanoparticles is growing progressively, enhancing the global concern on their potential health effects. Recent studies suggest that nanoceria may also have promising biomedical applications particularly in neurodegenerative and brain-related pathologies, but studies addressing their toxicity, and specifically on the nervous system, are still scarce, and their potential adverse effects and action mechanism are not totally understood yet.
View Article and Find Full Text PDFJ Neurosci
January 2025
Leibniz Institute for Neurobiology (LIN), Department of Genetics of Learning and Memory, Magdeburg, 39118 Germany
For a proper representation of the causal structure of the world, it is adaptive to consider both evidence for and evidence against causality. To take punishment as an example, the causality of a stimulus is unlikely if there is a temporal gap before punishment is received, but causality is credible if the stimulus immediately precedes punishment. In contrast, causality can be ruled out if the punishment occurred first.
View Article and Find Full Text PDFSci Adv
January 2025
Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA.
Alzheimers Dement
December 2024
Baylor College of Medicine, Houston, TX, USA.
Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!