Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mutually exclusive exons 2 and 3 of alpha-tropomyosin (alphaTM) have been used as a model system for strictly regulated alternative splicing. Exon 2 inclusion is only observed at high levels in smooth muscle (SM) tissues, whereas striated muscle and non-muscle cells use predominantly exon 3. Experiments in cell culture have shown that exon 2 selection results from repression of exon 3 and that this repression is mediated by regulatory elements flanking exon 3. We have now tested the cell culture-derived model in transgenic mice. We show that by harnessing the intronic splicing regulatory elements, expression of an enhanced green fluorescent protein transgene with a constitutively active promoter can be restricted to SM cells. Splicing of both endogenous alphaTM and a series of transgenes carrying regulatory element mutations was analyzed by reverse transcriptasePCR. These studies indicated that although SM-rich tissues are equipped to regulate splicing of high levels of endogenous or transgene alphaTM RNA, other non-SM tissues such as spleen, which express lower amounts of alphaTM, also splice significant proportions of exon 2, and this splicing pattern can be recapitulated by transgenes expressed at low levels. We confirm the importance in vivo of the negatively acting regulatory elements for regulated skipping of exon 3. Moreover, we provide evidence that some of the regulatory factors responsible for exon 3 skipping appear to be titratable, with loss of regulated splicing sometimes being associated with high transgene expression levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M405380200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!