Cannabinoid CB1 receptors in the brain are expressed on axon terminals presynaptic to neurons that express fatty acid amide hydrolase (FAAH). Postsynaptic FAAH catabolizes endocannabinoids which act as short-range transmitters. It has been previously shown that FAAH is also expressed in the epithelial cells of the choroid plexus. Using immunohistochemisty, we found that CB1 receptor protein is also expressed in choroid plexus epithelia. This is consistent with the hypothesis that FAAH in choroid plexus epithelial cells catabolizes endocannabinoids close to their site of action. Cannabinoids may then act directly on choroid plexus cells, and thereby contribute to the regulation of the composition of the CSF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2004.04.016DOI Listing

Publication Analysis

Top Keywords

choroid plexus
20
cannabinoid cb1
8
cb1 receptor
8
receptor protein
8
catabolizes endocannabinoids
8
epithelial cells
8
choroid
5
plexus
5
protein expression
4
expression rat
4

Similar Publications

Background: Inflammatory cells play a key role in the pathophysiology of AD and other neurodegenerative disorders. Glycans are known to mediate inflammatory cell activation and migration yet very little is understood about the expression of glycans, glycoproteins, and other glycoconjugates at the CP which serves as a gateway for peripheral immune cells into the brain. In a familial AD mouse model, we observed increased expression of Siglec-F-recognized glycans on CP epithelial cells.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.

Background: Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relationship between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans.

View Article and Find Full Text PDF

Adequate levels of thyroid hormones (THs) in the fetal brain are vital for early neurodevelopment. Most of TH in fetal brain is derived from circulating thyroxine (T4), which gets locally converted into the biologically active triiodothyronine (T3) by deiodinase enzymes. One of the major routes of TH into the brain is through the blood-cerebrospinal fluid barrier (BCSFB).

View Article and Find Full Text PDF

Hydrocephalus commonly occurs after subarachnoid hemorrhage (SAH) and is associated with increased morbidity and disability in patients with SAH. Choroid plexus cerebrospinal fluid (CSF) hypersecretion, obliterative arachnoiditis occluding the arachnoid villi, lymphatic obstruction, subarachnoid fibrosis, and glymphatic system injury are considered the main pathological mechanisms of hydrocephalus after SAH. Although the mechanisms of hydrocephalus after SAH are increasingly being revealed, the clinical prognosis of SAH still has not improved significantly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!