Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fibronectin (FN) is a multifunctional protein that plays important roles in many biological processes including cell adhesion and migration, wound healing and inflammation. Cellular FNs are produced by a wide variety of cell types including epithelial cells, which secrete them and often organize them into extensive extracellular matrices at their basal surface. However, regulation of FN synthesis and the polarity of FN secretion by intestinal epithelial cells have not been investigated. In the present study we investigated the role of adenosine, whose levels are up-regulated during inflammation, in modulating FN synthesis, the polarity of FN secretion and the downstream effects of the secreted FN. Polarized monolayers of T84 cells were used as an intestinal epithelial model. Adenosine added to either the apical or basolateral aspect of the cells led to a time- and dose-dependent accumulation of FN in the culture supernatants, polarized to the apical compartment and reached maximal levels 24 h after apical or basolateral addition of adenosine. Confocal microscopy confirmed that FN localized to the apical domain of model intestinal epithelial cells stimulated with apical or basolateral adenosine. The induction of FN was significantly down-regulated in response to the adenosine receptor antagonist alloxazine and was inhibited by cycloheximide. Moreover, adenosine increased FN promoter activity (3.5-fold compared with unstimulated controls) indicating that FN induction is, in part, transcriptionally regulated. Interestingly, we demonstrated that adenosine, as well as apical FN, significantly enhanced the adherence and invasion of Salmonella typhimurium into cultured epithelial cells. In summary, we have shown for the first time that FN, a classic extracellular matrix protein, is secreted into the apical compartment of epithelial cells in response to adenosine. FN may be a critical host factor that modulates adherence and invasion of bacteria, thus playing a key role in mucosal immune responses during inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1133816 | PMC |
http://dx.doi.org/10.1042/BJ20040021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!