Although the cellular steps required for metastasis are similar for all cancer cells, proteases involved in this process and their expression levels vary greatly between different cancer types. Thus, the identification of these proteolytic activities represents a crucial issue in the understanding of cancer development. Until now, phage display substrate technology has been successfully employed for the characterization of purified proteases but was never used with a mix of proteases. In the present work, we report an easy protocol to identify multiple proteolytic activities secreted by cancer cells. We selected substrates from a phage display library of high diversity using secreted media of three established prostate cancer cell lines (DU-145, LNCaP and PC-3) with variable degrees of invasive capability. Some of these selected peptide substrates were hydrolyzed by the secreted proteins of all three prostatic cancer cell lines, demonstrating similarities in their proteolytic activities. On the other hand, a few substrates were cancer cell specific, indicating differences in the phenotypes of protease expression in prostate cancer. This work reports for the first time the selection of substrates from a mix of proteases using phage display technology and opens a new avenue for the direct identification of proteolytic activities for tumor extracts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000077720 | DOI Listing |
Acta Crystallogr F Struct Biol Commun
February 2025
Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.
Periodontal diseases afflict 20-50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
Plant peptides, synthesized from larger precursor proteins, often undergo proteolytic cleavage and post-translational modifications to form active peptide hormones. This process involves several proteolytic enzymes (proteases). Among these, SBTs (serine proteases) are a major class of proteolytic enzymes in plants and play key roles in various regulatory mechanisms, including plant immune response, fruit development and ripening, modulating root growth, seed development and germination, and organ abscission.
View Article and Find Full Text PDFJ Transl Med
January 2025
Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
Background: The sustained activation of androgen receptor splice variant-7 (AR-V7) is a key factor in the resistance of castration-resistant prostate cancer (CRPC) to second-generation anti-androgens such as enzalutamide (ENZ). The AR/AR-V7 protein is regulated by the E3 ubiquitin ligase STUB1 and a complex involving HSP70, but the precise mechanism remains unclear.
Methods: High-throughput RNA sequencing was used to identify differentially expressed circular RNAs (circRNAs) in ENZ-resistant and control CRPC cells.
Philos Trans R Soc Lond B Biol Sci
January 2025
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
The mammalian cryptochrome proteins (CRY1 and CRY2) are transcriptional repressors most notable for their role in circadian transcriptional feedback. Not all circadian rhythms depend on CRY proteins, however, and the CRY proteins are promiscuous interactors that also regulate many other processes. In cells with chronic CRY deficiency, protein homeostasis is highly perturbed, with a basal increase in cellular stress and activation of key inflammatory signalling pathways.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Chemical and Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India. Electronic address:
Microbially Induced Calcium Carbonate Precipitation (MICP) plays a significant role in coastal soil stabilization and erosion prevention. In the present study, the biomineralizing potential of a newly isolated Bacillus sp. N₉ was investigated through MICP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!