Protease-activated receptor-1 (PAR1) is a G-protein coupled receptor that is proteolytically activated by blood-derived serine proteases. Although PAR1 is best known for its role in coagulation and hemostasis, recent findings demonstrate that PAR1 activation has actions in the central nervous system (CNS) apart from its role in the vasculature. Rodent studies have demonstrated that PAR1 is expressed throughout the brain on neurons and astrocytes. PAR1 activation in vitro and in vivo appears to influence neurodegeneration and neuroprotection in animal models of stroke and brain injury. Because of increasing evidence that PAR1 has important and diverse roles in the CNS, we explored the protein localization and function of PAR1 in human brain. PAR1 is most intensely expressed in astrocytes of white and gray matter and moderately expressed in neurons. PAR1 and GFAP co-localization demonstrates that PAR1 is expressed on the cell body and on astrocytic endfeet that invest capillaries. PAR1 activation in the U178MG human glioblastoma cell line increased PI hydrolysis and intracellular Ca(2+), indicating that PAR1 is functional in human glial-derived tumor cells. Primary cultures of human astrocytes and human glioblastoma cells respond to PAR1 activation by increasing intracellular Ca(2+). Together, these results demonstrate that PAR1 is expressed in human brain and functional in glial tumors and cultures derived from it. Because serine proteases may enter brain tissue and activate PAR1 when the blood brain barrier (BBB) breaks down, pharmacological manipulation of PAR1 signaling may provide a potential therapeutic target for neuroprotection in human neurological disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2004.02.018 | DOI Listing |
Mol Biol Cell
December 2024
Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093.
Signaling by G protein-coupled receptors (GPCRs) is regulated by temporally distinct processes including receptor desensitization, internalization, and lysosomal sorting, and are tightly controlled by post-translational modifications. While the role of phosphorylation in regulating GPCR signaling is well studied and established, the mechanisms by which other post-translational modifications, such as ubiquitination, regulate GPCR signaling are not clearly defined. We hypothesize that GPCR ubiquitination and deubiquitination is critical for proper signaling and cellular responses.
View Article and Find Full Text PDFOncogene
December 2024
Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Lung cancer is a fatal complication of idiopathic pulmonary fibrosis (IPF) with a poor prognosis. Current treatments are insufficient in improving the prognosis of lung cancer patients with comorbid idiopathic pulmonary fibrosis (IPF-LC). Senescent fibroblasts, as stromal cells in the tumor microenvironment, influence tumor progression via exosomes.
View Article and Find Full Text PDFBr J Pharmacol
December 2024
Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Background And Purpose: Pharmacological intervention of thrombosis is challenging, requiring a fined tune balance between beneficial antithrombotic effect versus risk of major bleeding complications. In this investigation, we elucidated the antithrombotic capacity of the novel 90-mer RNA aptamer Apta-1 and its underlying mechanism of action.
Experimental Approach: We utilized three independent in vivo animal models to establish antithrombotic activity and bleeding risk of Apta-1.
Conserv Biol
December 2024
Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.
Human-wildlife conflict (HWC) is an escalating humanitarian issue and a conservation concern. In terms of protection and management, areas at high risk of HWC are not necessarily afforded the same resources as areas prioritized for protection. To improve allocation of limited protection resources and HWC mitigation efficiency, we determined management priorities based on HWC risk and people's attitudes toward wildlife around the Giant Panda National Park.
View Article and Find Full Text PDFNat Commun
December 2024
Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!