We developed a novel computer-aided detection (CAD) algorithm called the surface normal overlap method that we applied to colonic polyp detection and lung nodule detection in helical computed tomography (CT) images. We demonstrate some of the theoretical aspects of this algorithm using a statistical shape model. The algorithm was then optimized on simulated CT data and evaluated using a per-lesion cross-validation on 8 CT colonography datasets and on 8 chest CT datasets. It is able to achieve 100% sensitivity for colonic polyps 10 mm and larger at 7.0 false positives (FPs)/dataset and 90% sensitivity for solid lung nodules 6 mm and larger at 5.6 FP/dataset.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tmi.2004.826362DOI Listing

Publication Analysis

Top Keywords

surface normal
8
normal overlap
8
computer-aided detection
8
colonic polyps
8
lung nodules
8
overlap computer-aided
4
detection
4
algorithm
4
detection algorithm
4
algorithm application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!