The link between oxidation and increased proteolysis in raw milk was studied. To accelerate oxidation, H2O2 (1 mM) was added to raw milk, resulting in enhanced proteolysis by up to 11.2% after 24 h incubation at 5 degrees C. Addition of Cu2+ (10 microM) to milk or exposure of milk to light (60 min) likewise increased proteolysis. To explain the mechanism responsible for increased proteolysis as a result of oxidation, the effect of lipid oxidation products on plasmin-induced proteolysis was tested. Addition of malondialdehyde to skim milk increased the formation of gamma-caseins, a proteolysis product from plasmin hydrolysis of beta-casein. The same observation was made in a model system containing 4.5 g beta-casein/l sodium tetraborate buffer at pH 8 and plasmin. Addition of a plasmin inhibitor blocked the formation of gamma-casein. The results indicate that aldehydes accumulated from lipid oxidation can modify beta-casein and thereby increase susceptibility of the proteins to proteolysis. Furthermore, the data suggest that proteolysis in raw milk may be connected to oxidative processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/s0022029903006654 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
Milk, a complex fluid renowned for abundance of vitamins and immune-boosting antibodies, holds a pivotal position in human nutrition. The research delves into the fundamental constituents of milk, focusing on cis-fatty acids (cis-FA), trans-fatty acids (trans-FA), and theα-helixstructure found in proteins. These constituents are instrumental in the determination of milk quality and its nutritional value.
View Article and Find Full Text PDFFood Chem X
January 2025
Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China.
In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found.
View Article and Find Full Text PDFFood Chem
January 2025
University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
The complexity of modern food supply chains limits the effectiveness of targeted approaches to address food traceability issues. Untargeted metabolomics provides a comprehensive profile of small molecules present within biological samples. In this study, the potential of ultra-high performance liquid chromatography-ion mobility-high resolution mass spectrometry (UHPLC-IMS-HRMS) to discriminate bovine milk samples collected at individual level was evaluated for traceability purposes.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFFoods
December 2024
Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ -25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ -10 °C) circumstances. The findings indicated elevated amounts of plasmin system components in cold-stressed raw milk. While storing UHT milk at 25 °C, the concentrations and activity of plasmin in the milk exhibited an initial increase followed by a decrease, peaking around the 30th day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!