Variation in nuclear DNA content within some eukaryotic species is well documented, but causes and consequences of such variation remain unclear. Here we report genome size of an estuarine and salt-marsh calanoid copepod, Eurytemora affinis, which has recently invaded inland freshwater habitats independently and repeatedly in North America, Europe, and Asia. Adults and embryos of E. affinis from the St. Lawrence River drainage were examined for somatic cell DNA content and the presence or absence of embryonic chromatin diminution, using Feulgen-DNA cytophotometry to determine a diploid or 2C genome size of 0.6-0.7 pg DNA/cell. The majority of somatic cell nuclei, however, have twice this DNA content (1.3 pg/nucleus) in all of the adults examined and possibly represent a population of cells arrested at the G2 stage of the cell cycle or associated with some degree of endopolyploidy. Both suggestions contradict assumptions that DNA replication does not occur in adult tissues during the determinate growth characteristic of copepods. Absence of germ cell nuclei with markedly elevated DNA values, commonly found for species of cyclopoid copepods that show chromatin diminution, indicates that E. affinis lacks this trait. The small genome size and presumed absence of chromatin diminution increase the potential utility of E. affinis as a model for genomic studies on mechanisms of adaptation during freshwater invasions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/g04-014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!