AI Article Synopsis

Article Abstract

Leishmania is a trypanosomatid parasite causing serious disease and displaying resistance to various drugs. Here, we present comparative proteomic analyses of Leishmania major parasites that have been either shocked with or selected in vitro for high level resistance to the model antifolate drug methotrexate. Numerous differentially expressed proteins were identified by these experiments. Some were associated with the stress response, whereas others were found to be overexpressed due to genetic linkage to primary resistance mediators present on DNA amplicons. Several proteins not previously associated with resistance were also identified. The role of one of these, methionine adenosyltransferase, was confirmed by gene transfection and metabolite analysis. After a single exposure to low levels of methotrexate, L. major methionine adenosyltransferase transfectants could grow at high concentrations of the drug. Methotrexate resistance was also correlated to increased cellular S-adenosylmethionine levels. The folate and S-adenosylmethionine regeneration pathways are intimately connected, which may provide a basis for this novel resistance phenotype. This thorough comparative proteomic analysis highlights the variety of responses required for drug resistance to be achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M405183200DOI Listing

Publication Analysis

Top Keywords

methionine adenosyltransferase
12
leishmania major
8
resistance
8
methotrexate resistance
8
comparative proteomic
8
drug methotrexate
8
differential protein
4
protein expression
4
expression analysis
4
analysis leishmania
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!