Abstract Glycogen synthase kinase3 (GSK3) is emerging as a prominent drug target in the CNS. The most exciting of the possibilities of GSK3 lies within the treatment of Alzheimer's disease (AD) where abnormal increases in GSK3 levels and activity have been associated with neuronal death, paired helical filament tau formation and neurite retraction as well as a decline in cognitive performance. Abnormal activity of GSK3 is also implicated in stroke. Lithium, a widely used drug for affective disorders, inhibits GSK3 at therapeutically relevant concentrations. Thus while the rationale remains testable, pharmaceutical companies are investing in finding a selective inhibitor of GSK3. In the present review, we summarize the properties of GSK3, and discuss the potential for such a therapy in AD, and other CNS disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2004.02422.x | DOI Listing |
Int J Mol Sci
January 2025
Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany.
Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFHepatology
January 2025
Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan.
Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.
View Article and Find Full Text PDFMicroPubl Biol
January 2025
The University of Alabama, Tuscaloosa, AL USA.
Gene model for the ortholog of glycogen synthase ( ) in the May 2017 (Princeton ASM75419v2/DsimGB2) Genome Assembly (GenBank Accession: GCA_000754195.3 ). This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!