In this paper we explore the global dynamics of an agent-type model for bubbles in gas-fluidized beds and demonstrate that these features are consistent with experimentally observed behavior. The model accounts for the simultaneous interactions of thousands of individual bubbles and includes mass-transfer and first-order reactions between the gas and solids so that the impact of the dynamics is reflected in reactant conversion. We start with model parameters that have been demonstrated to produce time average behavior consistent with experimental reactor measurements. By observing the temporal variations of spatially averaged bubble properties, we are able to clearly distinguish the onset of global low-dimensional features that appear to be consistent with previous observations. The most prominent of these features is a large-scale oscillation that exhibits intermittency with power-law scaling in the vicinity of a critical gas flow. We show that the oscillation occurs as the result of a globally synchronized horizontal movement of the bubbles toward the center of the reactor. The oscillation appears to be consistent with the occurrence of the so-called "slugging" phenomenon, which is known to have large effects on fluidized bed reactor performance. Although this model can clearly be further improved, its success in replicating several of the key features of slugging indicates that this approach can serve as a useful tool for understanding and possibly controlling fluidized bed dynamics. We also conjecture that this model may be useful for more generally understanding the occurrence of global features in high-dimensional, multi-agent systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1752181 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!