Although progesterone, the natural ligand of the progesterone receptor (PR), has a hydrogen atom at the 17alpha position, other potent steroid agonists such as norethindrone and mometasone furoate have larger substituents at this position that are accommodated by the PR ligand binding pocket. Crystallographic analysis of PR ligand binding domain complexes clearly demonstrated that these moieties were accommodated by local shifts of the protein main chain and by adoption of alternative side chain rotamer conformations of ligand-proximal amino acids. These conformational changes imparted a ligand-specific volume to the binding pocket, from 490 A3 in the metribolone complex to 520 A3 in the norethindrone complex, 565 A3 in the progesterone complex, and 730 A3 in the mometasone furoate complex. Despite these marked alterations in binding pocket volume, critical interactions essential for establishment of an active AF2 conformation were maintained.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm030640nDOI Listing

Publication Analysis

Top Keywords

binding pocket
16
ligand binding
12
mometasone furoate
12
progesterone receptor
8
norethindrone mometasone
8
binding
5
progesterone
4
ligand
4
receptor ligand
4
pocket
4

Similar Publications

Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins.

View Article and Find Full Text PDF

Analysis of potential human accumulation differences and mechanisms of environmental new flame retardants: Based on in vitro experiments and theoretical calculations.

Sci Total Environ

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Hundreds of new flame retardants (NFRs) are widely used, causing environmental pollution and threating human health. In this study, based on the interaction of NFRs and human serum albumin (HSA), we assessed the differences in potential human accumulation of 8 NFRs including 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromobisphenol A bis(dibromopropyl ether) (TBBPA-DBPE), 2,4,6-tribromophenol (TBP), pentabromophenol (PBP), tri-n-butyl phosphate (TnBP), triphenyl phosphate (TPP), Tri(2-chloroethyl) phosphate (TCEP), and Tri(1,3-dichloro-2-propyl) phosphate (TDCP). All NFRs could bind to HSA and cause slight damage to its structure, suggesting their potential human accumulation ability.

View Article and Find Full Text PDF

Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain.

Eur J Med Chem

December 2024

SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:

Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!