Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An algorithm based on independent component analysis (ICA) is introduced for P300 detection. After ICA decomposition, P300-related independent components are selected according to the a priori knowledge of P300 spatio-temporal pattern, and clear P300 peak is reconstructed by back projection of ICA. Applied to the dataset IIb of BCI Competition 2003, the algorithm achieved an accuracy of 100% in P300 detection within five repetitions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2004.826699 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!