Objective: To demonstrate that nosocomial transmission of vancomycin-resistant enterococci (VRE) can be terminated and endemicity prevented despite widespread dissemination of an epidemic strain in a large tertiary-care referral hospital.

Interventions: Two months after the index case was detected in the intensive care unit, 68 patients became either infected or colonized with an epidemic strain of vanB vancomycin-resistant Enterococcus faecium despite standard infection control procedures. The following additional interventions were then introduced to control the outbreak: (1) formation of a VRE executive group; (2) rapid laboratory identification (30 to 48 hours) using culture and polymerase chain reaction detection of vanA and vanB resistance genes; (3) mass screening of all hospitalized patients with isolation of carriers and cohorting of contacts; (4) environmental screening and increased cleaning; (5) electronic flagging of medical records of contacts; and (6) antibiotic restrictions (third-generation cephalosporins and vancomycin).

Results: A total of 19,658 patient and 24,396 environmental swabs were processed between July and December 2001. One hundred sixty-nine patients in 23 wards were colonized with a single strain of vanB vancomycin-resistant E. faecium. Introducing additional control measures rapidly brought the outbreak under control. Hospital-wide screening found 39 previously unidentified colonized patients, with only 7 more nonsegregated patients being detected in the next 2 months. The outbreak was terminated within 3 months at a cost of dollar 2.7 million (Australian dollars).

Conclusion: Despite widespread dissemination of VRE in a large acute care facility, eradication was achievable by a well-resourced, coordinated, multifaceted approach and was in accordance with good clinical governance.

Download full-text PDF

Source
http://dx.doi.org/10.1086/502410DOI Listing

Publication Analysis

Top Keywords

strain vanb
12
vanb vancomycin-resistant
12
single strain
8
vancomycin-resistant enterococcus
8
enterococcus faecium
8
despite widespread
8
widespread dissemination
8
epidemic strain
8
patients
5
eradication large
4

Similar Publications

Objective: This study aimed to investigate the presence of glycopeptide resistance and virulence genes in Enterococcus spp. isolated from cheese and the clonal relationship of E. faecium species with rectal surveillance isolates.

View Article and Find Full Text PDF

Aims: The present study aimed to detect the frequency of vancomycin resistance and virulence genes' profiles of multi-drug-resistant (MDR) enterococcal isolates from different sources and to investigate the sequence heterogeneity between the esp genes of MDR and vancomycin-resistant Enterococcus faecalis isolates from chicken and human sources.

Methods And Results: Conventional phenotypic methods identified 91 isolates (60.7%) as Enterococcus species, and these isolates were retrieved from dairy (37/52), chicken (35/54), and human (19/44) origins.

View Article and Find Full Text PDF

Background , once benign intestinal flora, has transformed into formidable nosocomial pathogens as a result of the accelerated emergence of antibiotic resistance represents a major global health challenge, particularly within hospital settings. has grown more prevalent in nosocomial infections, such as urinary tract infections (UTIs), surgical site infections (SSIs) and bacteremia. The potential emergence of vancomycin-resistant (VRE) strains further complicates treatment choices for multi-drug resistant (MDR) infections.

View Article and Find Full Text PDF

Background: Staphylococcus aureus strains are highly virulent and associated with an eclectic range of severe nosocomial and community-acquired infections.

Objectives: This study assessed methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA/VRSA) from clinical and ready-to-eat (RTE) food sources, screened for antibiotic resistance; and molecular determinants of antibiotic and virulence genes.

Methods: Altogether, 465 clinical and RTE food samples were analyzed via conventional microbiological techniques and S.

View Article and Find Full Text PDF

Introduction: Lignin is a promising resource for obtaining aromatic materials, however, its heterogeneous structure poses a challenge for effective utilization. One approach to produce homogeneous aromatic materials from lignin involves the application of microbial catabolism, which is gaining attention. This current study focused on constructing a catabolic pathway in Pseudomonas sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!