The formation of the otic placode is a complex process requiring multiple inductive signals. In zebrafish, fgf3 and fgf8, dlx3b and dlx4b, and foxi1 have been identified as the earliest-acting genes in this process. fgf3 and fgf8 are required as inductive signals, whereas dlx3b, dlx4b, and foxi1 appear to act directly within otic primordia. We have investigated potential interactions among these genes. Depletion of either dlx3b and dlx4b or foxi1 leads to a delay of pax2a expression in the otic primordia and reduction of the otic vesicle. Depletion of both foxi1 and dlx3b results in a complete ablation of otic placode formation. A strong synergistic interaction is also observed among foxi1, fgf3, and fgf8, and a weaker interaction among dlx3b, fgf3, and fgf8. Misexpression of foxi1 can induce expression of pax8, an early marker for the otic primordia, in embryos treated with an inhibitor of fibroblast growth factor (FGF) signaling. Conversely, morpholino knockdown of foxi1 blocks ectopic pax8 expression and otic vesicle formation induced by misexpression of fgf3 and/or fgf8. The observed genetic interactions suggest a model in which foxi1 and dlx3b/dlx4b act in independent pathways together with distinct phases of FGF signaling to promote otic placode induction and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.20067 | DOI Listing |
Dev Dyn
January 2025
Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA.
Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development.
View Article and Find Full Text PDFElife
December 2024
Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France.
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours.
View Article and Find Full Text PDFBiomedicines
October 2024
LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France.
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required.
View Article and Find Full Text PDFDev Biol
November 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. Electronic address:
Curr Top Dev Biol
May 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States. Electronic address:
The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!