Objective: To determine the specific effect of peak volume history pressure on the inflation limb of the pressure-volume curve and peak pressure-volume curve pressure on the deflation limb of the pressure-volume curve.

Design: Prospective assessment of pressure-volume curves in saline, lung lavage injured sheep.

Setting: Large animal laboratory of a university-affiliated hospital.

Subjects: Eight female Dorset sheep.

Interventions: : The effect of two volume history pressures (40 and 60 cm H2O) and three pressure-volume curve peak pressures (40, 50, and 60 cm H2O) were randomly compared.

Measurements And Main Results: Peak volume history pressure affected the inflation curve beyond the lower inflection point but did not affect the inflection point (Pflex). Peak pressure-volume curve pressure affected the deflation curve. Increased peak volume history pressure increased inflation compliance (p <.05). Increased peak pressure-volume curve pressure increased the point of maximum compliance change on the deflation limb and deflation compliance and decreased compliance between peak pressure and the point of maximum curvature on the deflation limb (p <.05).

Conclusion: Peak volume history pressure must be considered when interpreting the inflation limb of the pressure-volume curve of the respiratory system beyond the inflection point. The peak pressure achieved during the pressure-volume curve is important during interpretation of deflation compliance and the point of maximum compliance change on the deflation limb.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ccm.0000128573.28173.2eDOI Listing

Publication Analysis

Top Keywords

pressure-volume curve
24
volume history
20
peak volume
16
peak pressure-volume
12
history pressure
12
peak
8
pressure-volume
8
curve
8
pressure inflation
8
limb pressure-volume
8

Similar Publications

An interactive simulator to deepen the understanding of Guyton's venous return curve.

J Physiol Sci

January 2025

Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, 252-0374, Sagamihara, Kanagawa, Japan.

Mean circulatory filling pressure, venous return curve, and Guyton's graphical analysis are basic concepts in cardiovascular physiology. However, some medical students may not know how to view and interpret or understand them adequately. To deepen students' understanding of the graphical analysis, in place of having to perform live animal experiments, we developed an interactive cardiovascular simulator, as a self-learning tool, as a web application.

View Article and Find Full Text PDF

Bi-ventricular elastic material parameters estimation using 3D CMR myocardial strains in rheumatic heart disease patients.

J Biomech

January 2025

Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, South Africa; South African Medical Research Council Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases. Electronic address:

Understanding the elastic material behavior of myocardium during the diastolic phase is critical for evaluating cardiac function and improving treatments for diastolic abnormalities. This study introduces a novel multi-objective optimization framework that incorporates both strain and volume measurements to enhance the accuracy of myocardial property assessments in Rheumatic Heart Disease (RHD) patients and healthy controls. By employing global volume and strain measurements instead of segmented strains from the sixteen AHA regions, we achieve a robust alignment with the Klotz curve across all groups, indicating an accurate simulation of end-diastolic pressure-volume relationships (EDPVRs).

View Article and Find Full Text PDF

Typical waveforms used for the simulation of pressure and volume-controlled ventilation in medical ventilators have been extensively studied in the literature. The majority of simulation studies reported employ the step pattern or ramp pattern to model the pressure and flow variations in pressure/volume-controlled ventilation. It was observed that the above waveforms tend to add to the discomfort level of patients due to the presence of jerks in derivatives of pressure/flow variations; the pressure/flow variation of air and oxygen mixture should be smooth so that the patient discomfort is kept at a minimal level.

View Article and Find Full Text PDF

Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung.

View Article and Find Full Text PDF

Background: Perioperative right ventricular (RV) dysfunction is associated with increased morbidity and mortality in cardiac surgery patients. This study aimed to demonstrate proof of concept in generating intraoperative RV pressure-volume (PV) loops and conducting an end-systolic PV relationship (ESPVR) analysis using data obtained from routinely used intraoperative monitors.

Methods: Adult patients undergoing cardiac surgery with the placement of a pulmonary artery catheter (PAC) between May 2023 and March 2024 were included prospectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!