Previous attempts to produce a vaccine for ricin toxin have been hampered by safety concerns arising from residual toxicity and the undesirable aggregation or precipitation caused by exposure of hydrophobic surfaces on the ricin A-chain (RTA) in the absence of its natural B-chain partner. We undertook a structure-based solution to this problem by reversing evolutionary selection on the 'ribosome inactivating protein' fold of RTA to arrive at a non-functional, compacted single-domain scaffold (sequence RTA1-198) for presentation of a specific protective epitope (RTA loop 95-110). An optimized protein based upon our modeling design (RTA1-33/44-198) showed greater resistance to thermal denaturation, less precipitation under physiological conditions and a reduction in toxic activity of at least three orders of magnitude compared with RTA. Most importantly, RTA1-198 or RTA1-33/44-198 protected 100% of vaccinated animals against supra-lethal challenge with aerosolized ricin. We conclude that comparative protein analysis and engineering yielded a superior vaccine by exploiting a component of the toxin that is inherently more stable than is the parent RTA molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzh043DOI Listing

Publication Analysis

Top Keywords

vaccine ricin
8
rta
5
finding vaccine
4
ricin
4
ricin protein
4
protein fold
4
fold previous
4
previous attempts
4
attempts produce
4
produce vaccine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!