Unevenness of ventilation assessed by the expired CO(2) gas volume versus V(T) curve in asthmatic patients.

Respir Physiol Neurobiol

Respiratory Function Laboratory, Department of Respiratory Medicine, University of Athens Medical School, "Sotiria" Hospital for Diseases of the Chest, 152, Mesogion Ave, Athens GR-11527, Greece.

Published: June 2004

Recently, we have shown that the expired CO2 gas volume versus tidal volume (VCO2-VT) curve is a useful tool for assessing unevenness of ventilation because it allows the separation of tidal volume into three functional compartments: (a) the CO2-free expired air (V0), (b) the transitional volume (Vtr), (c) the alveolar volume (VA) and the measurement of alveolar FCO2 during resting breathing in normal subjects and patients with COPD. In this paper, we have investigated whether changes pertaining to unevenness of ventilation taking place immediately after the administration of methacholine can be assessed using the VCO2-VT curve in asthmatic patients. The VCO2-VT curve was obtained during tidal breathing from 16 stable asthmatic patients who underwent a methacholine challenge test. It has been found that the Vtr, and hence Bohr's dead space (VD,Bohr = V0 + Vtr), over tidal volume ratios were significantly increased immediately after the methacholine administration, whilst the V0 over tidal volume ratio was not affected. The change of the above ratios was not related to the percentage decrease of FEV1.0 following methacholine administration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2004.01.005DOI Listing

Publication Analysis

Top Keywords

tidal volume
16
unevenness ventilation
12
asthmatic patients
12
vco2-vt curve
12
expired co2
8
co2 gas
8
volume
8
gas volume
8
volume versus
8
curve asthmatic
8

Similar Publications

Towards a common terminology of ventilation during cardiopulmonary resuscitation.

Resuscitation

January 2025

Institute for Emergency Medicine, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus 808, Kiel, 24105, Schleswig-Holstein, Germany; Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, Graz, 8036, Styria, Austria. Electronic address:

Manual and mechanical ventilation during cardiopulmonary resuscitation are critical yet poorly understood components of resuscitation care. In recent years, intra-arrest ventilation has been the subject of a growing number of laboratory and clinical investigations. Essential components to accurately interpret or reproduce original investigations are the exact measurement and transparent reporting of key ventilation parameters, such as volumes and airway pressures obtained during ongoing cardiopulmonary resuscitation.

View Article and Find Full Text PDF

The rapid shallow breathing index (RSBI) as a predictor for extubation success in medical and surgical ICU patients: A retrospective cohort study.

Heart Lung

January 2025

College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Ministry of the National Guard Health Affairs Riyadh, Saudi Arabia; Medical-Surgical Nursing Department, Faculty of Nursing, Cairo University, Cairo, Egypt.

Background: Endotracheal intubation and mechanical ventilation comprise common life support interventions for patients in intensive care units (ICUs). Premature or delayed extubation increases the risk of morbidity and mortality. Despite following weaning protocols, 10-20 % of patients fail extubation within 48 h.

View Article and Find Full Text PDF

Abstract Objective: Abnormal regional lung ventilation can lead to undesirable outcomes during the induction of anesthesia. Head rotated ventilation has proven to change the airflow of upper airway tract and be effective in increasing the tidal volume. This study aimed to investigate the influence of head rotated mask ventilation on regional ventilation distribution during the induction phase of anesthesia.

View Article and Find Full Text PDF

Effects of Variable Ventilation on Gas Exchange in an Experimental Model of Capnoperitoneum: A Randomized Crossover Study.

Anesth Analg

January 2025

From the Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland.

Background: The rapid advancement of minimally invasive surgical techniques has made laparoscopy a preferred alternative because it reduces postoperative complications. However, inflating the peritoneum with CO2 causes a cranial shift of the diaphragm decreasing lung volume and impairing gas exchange. Additionally, CO2 absorption increases blood CO2 levels, further complicating mechanical ventilation when the lung function is already compromised.

View Article and Find Full Text PDF

An optimal protective ventilation strategy in lung resection surgery: a prospective, single-center, three-arm randomized controlled trial.

Updates Surg

January 2025

Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

Protective ventilation reduces ventilator-induced acute lung injury postoperatively; however, the optimal strategy for one-lung ventilation (OLV) remains unclear. This study compared three protective ventilation strategies with a postoperative partial pressure of oxygen (PaO)/fraction of inspired oxygen (FiO) ratio to reduce the incidence of immediate postoperative pulmonary complications (PPCs) in patients undergoing lung resection surgery. Eighty-seven patients with ASA physical status I-III requiring OLV for lung resection surgery were randomized into three groups according to the applied ventilation strategies: low tidal volume (V) of 4 mL/kg of predicted body weight (PBW) (LV group), medium V of 6 mL/kg of PBW (MV group), and high V of 8 mL/kg of PBW (HV group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!