Pseudomonas aeruginosa is a pulmonary pathogen in individuals with impaired mucociliary clearance such as cystic fibrosis or mechanical ventilation. Non-opsonic phagocytosis of P. aeruginosa can be mediated by either CR3 or CD14 and different strains appear to have a bias towards one or the other receptor. Strain Fc808 is ingested through CD14 whereas P1 (Fc194) uses CR3. In an in vitro culture system, the inflammatory response of macrophages to these two different strains of P. aeruginosa was divergent at the protein level, with higher IL-6 and tumour necrosis factor (TNF)-alpha production generated in response to strain P1 and higher IL-1 beta production in response to strain Fc808. Interaction of macrophages with these two bacterial strains induced distinct gene expression patterns as detected by gene array analysis, with prominence of genes encoding pro-inflammatory cytokines, surface receptors, transcription factors and proteins involved in phagocytosis. However, comparison of gene expression data and cytokine response data with the two bacterial strains indicated that production of IL-1 beta, IL-6 and TNF-alpha was under differential post-transcriptional control. Interestingly, this effect did not correlate with receptor bias but instead was related to the different LPSs of the two strains. The use of specific mitogen-activated protein kinase (MAPK) inhibitors suggested a role for extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in the differential cytokine production by strains P1 and Fc808. These results indicate that strains of the same species of bacteria may induce differential macrophage phagocytic and inflammatory responses with likely consequence for bacterial clearance and host injury.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-5822.2004.00388.xDOI Listing

Publication Analysis

Top Keywords

differential post-transcriptional
8
pseudomonas aeruginosa
8
strain fc808
8
response strain
8
il-1 beta
8
bacterial strains
8
gene expression
8
strains
7
differential
4
post-transcriptional activation
4

Similar Publications

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

During all periods of male ontogenesis, physiological processes responsible for the correct functioning of reproductive organs and spermatogenesis are under the influence of various factors (neuro-humoral, genetic, and paratypical). Recently, the attention of researchers has increasingly turned to the study of epigenetic factors. In scientific publications, one can increasingly find references to the direct role of microRNAs, small non-coding RNAs involved in post-transcriptional regulation of gene expression, in the processes of development and functioning of reproductive organs.

View Article and Find Full Text PDF

N6-methyladenosine (mA), a well-known post-transcriptional modification, is implicated in diverse cellular and physiological processes. However, much remains unknown regarding the precise role and mechanism of mA modification on muscle development. In this study, we make observation that the levels of mA and METTL3 are markedly elevated during the differentiation phase (DM) compared to the growth phase (GM) in both C2C12 and bovine myoblasts.

View Article and Find Full Text PDF

lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that modulate various cellular processes, such as proliferation, differentiation, migration, invasion, and apoptosis, via different mechanisms. An increasing amount of research indicates that abnormal expression of lncRNA influences the development of drug resistance as well as the genesis and advancement of cancer, including melanoma. Furthermore, they are attractive biomarkers for non-invasive cancer diagnostics due to their strongly modulated expression and improved tissue and disease specificity.

View Article and Find Full Text PDF

Deer antler reserve mesenchyme cells modified with miR-145 promote chondrogenesis in cartilage regeneration.

Front Vet Sci

December 2024

Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.

Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. In this study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation at the molecular and histological levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!