A dimer-of-dimers model compound for the oxygen-evolving complex of photosystem II, [[(H(2)O)(terpy)Mn(IV)(micro-O)(2)Mn(IV)(terpy)](2)(micro-O)](ClO(4))(6) (terpy = 2,2':6',2' '-terpyridine), has been prepared and characterized by X-ray crystallography and ESI-MS. Low pH was found to promote the disproportionation of [Mn(III/IV)(2)O(2)(terpy)(2)(OH(2))(2)](3+) to Mn(2+) and a Mn(IV/IV)(2)O(2)(terpy)(2) species; the latter complex slowly dimerizes to form the title complex. Protonation of a micro-oxo bridge is proposed to initiate the disproportionation, based on analogy with the [Mn(III/)(IV)(2)O(2)(bpy)(4)](3+) system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja037389l | DOI Listing |
J Biol Chem
December 2024
Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States. Electronic address:
J Struct Biol
September 2024
Department of Host Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA. Electronic address:
Oleate hydratase (OhyA) is a bacterial peripheral membrane protein that catalyzes FAD-dependent water addition to membrane bilayer-embedded unsaturated fatty acids. The opportunistic pathogen Staphylococcus aureus uses OhyA to counteract the innate immune system and support colonization. Many Gram-positive and Gram-negative bacteria in the microbiome also encode OhyA.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2024
Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO BOX 111, 80101, Joensuu, Finland.
Microbial non-phosphorylative oxidative pathways present promising potential in the biosynthesis of platform chemicals from the hemicellulosic fraction of lignocellulose. An L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii catalyzes the rate-limiting step in the non-phosphorylative oxidative pathways, that is, converts sugar acid to 2-dehydro-3-deoxy sugar acid.
View Article and Find Full Text PDFDisulfide bonds provide a convenient method for chemoselective alteration of peptide and protein structure and function. We previously reported that mild oxidation of a p53-derived bisthiol peptide (CTFANLWRLLAQNC) under dilute non-denaturing conditions led to unexpected disulfide-linked dimers as the exclusive product. The dimers were antiparallel, significantly α-helical, resistant to protease degradation, and easily reduced back to the original bisthiol peptide.
View Article and Find Full Text PDFJ Mol Biol
August 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address:
The aggregation pathway of transthyretin (TTR) proceeds through rate-limiting dissociation of the tetramer (a dimer of dimers) and partial misfolding of the resulting monomer, which assembles into amyloid structures through a downhill polymerization mechanism. The structural features of the aggregation-prone monomeric intermediate are poorly understood. NMR relaxation dispersion offers a unique opportunity to characterize amyloidogenic intermediates when they exchange on favorable timescales with NMR-visible ground states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!