Accumulation of genetic alterations in hepatocarcinogenesis is closely associated with chronic inflammatory liver disease. 8-oxo-2'-deoxyguanosine (8-oxo-dG), the major promutagenic DNA adduct caused by reactive oxygen species (ROS), leads to G:C --> T:A transversions. These lesions can be enzymatically repaired mainly by human MutT homolog 1 (hMTH1), human 8-oxo-guanine DNA glycosylase (hOGG1) and human MutY homolog (hMYH). The aim of this study was to evaluate the extent of oxidative damage and its dependence on the cellular antioxidative capacity and the expression of specific DNA repair enzymes in tumor (tu) and corresponding adjacent nontumor (ntu) liver tissue of 23 patients with histologically confirmed hepatocellular carcinoma. 8-oxo-dG levels, as detected by high-pressure liquid chromatography with electrochemical detection, were significantly (P =.003) elevated in ntu tissue (median, 129 fmol/microg DNA) as compared to tu tissue (median, 52 fmol/microg DNA), and were closely associated with inflammatory infiltration. In ntu tissue, the hepatic iron concentration and malondialdehyde levels were significantly (P =.001) higher as compared to tu tissue. Glutathione content, glutathione peroxidase activity and manganese superoxide dismutase messenger RNA (mRNA) expression did not show statistical differences between ntu and tu tissue. Real-time reverse transcription polymerase chain reaction revealed in tu tissue significantly (P =.014) higher hMTH1 mRNA expression compared to ntu tissue. In contrast, hMYH mRNA expression was significantly (P <.05) higher in ntu tissue. No difference in hOGG1 mRNA expression was seen between tu and ntu. In conclusion, these data suggest that ROS generated by chronic inflammation contribute to human hepatocarcinogenesis. The role of DNA repair enzymes appears to be of reactive rather than causative manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.20241DOI Listing

Publication Analysis

Top Keywords

ntu tissue
16
mrna expression
12
tissue
9
oxidative damage
8
liver tissue
8
hepatocellular carcinoma
8
closely associated
8
tissue median
8
fmol/microg dna
8
compared tissue
8

Similar Publications

Enhanced detection of actionable mutations in NSCLC through pleural effusion cell-free DNA sequencing: A prospective study.

Eur J Cancer

January 2025

Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Zhongzheng Dist., Taipei City 100, Taiwan. Electronic address:

Background: Inadequate tumour samples often hinder molecular testing in non-small cell lung cancer (NSCLC). Plasma-based cell-free DNA (cfDNA) sequencing has shown promise in bypassing these tissue limitations. Nevertheless, pleural effusion (PE) samples may offer a richer cfDNA source for mutation detection in patients with malignant PE.

View Article and Find Full Text PDF

Targeted Cx43 therapeutics reduce NLRP3 inflammasome activation in rat burn injury.

Burns

December 2024

Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore; Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, 308232,  Singapore; National Skin Centre Singapore, 1 Mandalay Rd, 308205, Singapore. Electronic address:

Burns are dynamic injuries characterized by an initial zone of necrosis that progresses to compromise surrounding tissue. Acute inflammation and cell death are two main factors contributing to burn progression. These processes are modulated by Connexin43 (Cx43) hemichannels and gap junctions in burns and chronic wounds.

View Article and Find Full Text PDF

Recent developments in pillar[5]arene-based nanomaterials for cancer therapy.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.

Nanomaterials possess unique size characteristics, enabling them to cross tissue gaps, penetrate the blood-brain barrier and endothelial cells, and release drugs at the cellular level. Additionally, the surface of nanomaterials is readily functionalized, endowing them with good biocompatibility, low biotoxicity, and specific targeting. All these advantages render nanomaterials broad application prospects in tumor therapy.

View Article and Find Full Text PDF

Dynamic Peptide Nanoframework-Guided Protein Coassembly: Advancing Adhesion Performance with Hierarchical Structures.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

Hierarchical structures are essential in natural adhesion systems. Replicating these in synthetic adhesives is challenging due to intricate molecular mechanisms and multiscale processes. Here, we report three phosphorylated peptides featuring a hydrophobic self-assembly motif linked to a hydrophilic phosphorylated sequence (pSGSS), forming peptide fibril nanoframeworks.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is commonly occurred among males worldwide and its prognosis could be influenced by biochemical recurrence (BCR). MicroRNAs (miRNAs) are functional regulators in carcinogenesis, and miR-221-3p was reported as one of the significant candidates deregulated in PCa. However, its regulatory pattern in PCa BCR across literature reports was not consistent, and the targets and mechanisms in PCa malignant transition and BCR are less explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!