Ursodeoxycholic acid (UDCA) is used in the treatment of cholestatic liver diseases, but its mechanism of action is not yet well defined. The aim of this study was to explore the protective mechanisms of the taurine-conjugate of UDCA (tauroursodeoxycholic acid [TUDCA]) against glycochenodeoxycholic acid (GCDCA)-induced apoptosis in primary cultures of rat hepatocytes. Hepatocytes were exposed to GCDCA, TUDCA, the glyco-conjugate of UDCA (GUDCA), and TCDCA. The phosphatidylinositol-3 kinase pathway (PI3K) and nuclear factor-kappaB were inhibited using LY 294002 and adenoviral overexpression of dominant-negative IkappaB, respectively. The role of p38 and extracellular signal-regulated protein kinase mitogen-activated protein kinase (MAPK) pathways were investigated using the inhibitors SB 203580 and U0 126 and Western blot analysis. Transcription was blocked by actinomycin-D. Apoptosis was determined by measuring caspase-3, -9, and -8 activity using fluorimetric enzyme detection, Western blot analysis, immunocytochemistry, and nuclear morphological analysis. Our results demonstrated that uptake of GCDCA is needed for apoptosis induction. TUDCA, but not TCDCA and GUDCA, rapidly inhibited, but did not delay, apoptosis at all time points tested. However, the protective effect of TUDCA was independent of its inhibition of caspase-8. Up to 6 hours of preincubation with TUDCA before addition of GCDCA clearly decreased GCDCA-induced apoptosis. At up to 1.5 hours after exposure with GCDCA, the addition of TUDCA was still protective. This protection was dependent on activation of p38, ERK MAPK, and PI3K pathways, but independent of competition on the cell membrane, NF-kappaB activation, and transcription. In conclusion, TUDCA contributes to the protection against GCDCA-induced mitochondria-controlled apoptosis by activating survival pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.20246DOI Listing

Publication Analysis

Top Keywords

tauroursodeoxycholic acid
8
rat hepatocytes
8
survival pathways
8
gcdca-induced apoptosis
8
protein kinase
8
western blot
8
blot analysis
8
apoptosis
7
tudca
6
acid protects
4

Similar Publications

Objective: To characterize the bile acid metabolomic profiles of umbilical cord blood and meconium in healthy newborns.

Methods: Fifteen healthy newborns, which born in the Obstetrics Department of the Affiliated Hospital of Southwest Medical University between July 1 and August 31, 2023, were selected as study subjects. Umbilical cord blood and meconium samples were collected, and bile acid metabolomics were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

The aqueous extract of Murray (LRE) could attenuate neuroinflammation in mice induced by a high-fat and high-fructose diet (HFFD). Moreover, LRE could adjust bile acid (BA) metabolism and the gut microbiota. Behavioral tests revealed that LRE prevented HFFD-induced cognitive deficits.

View Article and Find Full Text PDF

Cells counter accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) through activation of the Unfolded Protein Response (UPR). Small molecules termed chemical chaperones can promote protein folding to alleviate ER stress. The bile acid tauroursodeoxycholic acid (TUDCA), has been described as a chemical chaperone.

View Article and Find Full Text PDF

Synthesis of TUDCA from chicken bile: immobilized dual-enzymatic system for producing artificial bear bile substitute.

Microb Cell Fact

December 2024

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.

Bear bile, a valuable animal-derived medicinal substance primarily composed of tauroursodeoxycholic acid (TUDCA), is widely distributed in the medicinal market across various countries due to its significant therapeutic potential. Given the extreme cruelty involved in bear bile extraction, researchers are focusing on developing synthetic bear bile powder as a more humane alternative. This review presents an industrially practical and environmentally friendly process for producing an artificial substitute for bear bile powder using inexpensive and readily available chicken bile powder through an immobilized 7α-,7β-HSDH dual-enzymatic syste.

View Article and Find Full Text PDF

Tauroursodeoxycholic acid mitigates depression-like behavior and hippocampal neuronal damage in a corticosterone model of female mice.

Naunyn Schmiedebergs Arch Pharmacol

November 2024

Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.

Depression, a complex mental disorder influenced by both psychological and physiological factors, predominantly affects females. Studies have indicated that elevated levels of cortisol/corticosterone (CORT) under stress conditions can lead to hippocampal neuronal damage, thereby contributing to depression. Tauroursodeoxycholic acid (TUDCA), a bile acid, possesses anti-apoptotic, antioxidant, and anti-inflammatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!