In the pediatric cancer alveolar rhabdomyosarcoma (ARMS), the 2;13 chromosomal translocation juxtaposes the PAX3 and FKHR genes to generate a chimeric transcription factor. To explore molecular pathways altered by this oncoprotein, we generated an inducible form by fusing PAX3-FKHR to a modified estrogen receptor ligand-binding domain and expressed this construct in the RD embryonal rhabdomyosarcoma cell line. This inducible system permits short-term evaluation of downstream expression targets of PAX3-FKHR and complements a panel of stable long-term RD subclones constitutively expressing PAX3-FKHR. Using these two sets of resources, we investigated several candidate PAX3-FKHR target genes. First, we demonstrated in both short-term and long-term systems that PAX3-FKHR upregulates expression of the gene encoding the chemokine receptor CXCR4. In addition, we found that expression of wild-type PAX3 is upregulated, whereas expression of wild-type PAX7 is downregulated by PAX3-FKHR. In the presence of cycloheximide, CXCR4 and PAX3 are still inducible, supporting the hypothesis that these genes are direct transcriptional targets of PAX3-FKHR. Finally, studies of ARMS tumors revealed CXCR4, PAX3, and PAX7 expression levels consistent with our cell culture results. These findings of genes regulated by PAX3-FKHR will direct future biological and clinical investigation to important pathways contributing to ARMS tumorigenesis and progression.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.3700125DOI Listing

Publication Analysis

Top Keywords

cxcr4 pax3
12
pax3-fkhr
9
stable long-term
8
cell culture
8
pax3 pax7
8
pax7 expression
8
targets pax3-fkhr
8
expression wild-type
8
expression
6
pax3
5

Similar Publications

Prenatal glucocorticoid exposure and congenital abdominal wall defects: Involvement of CXCR4 - SDF-1 signaling.

Mech Ageing Dev

February 2025

Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, Bochum, Germany. Electronic address:

Developmental defects of the ventral abdominal wall, such as gastroschisis, have been associated with prenatal stress exposure. To investigate this further, dexamethasone (DEX), a synthetic glucocorticoid, was administered to fertilized chicken eggs on day 1 of incubation to simulate stress, and embryonic development was subsequently analyzed through in-situ hybridization, immunohistochemistry, and histological methods. Significant developmental abnormalities were displayed by DEX-treated embryos, including open abdomens, reduced MYOG expression in the abdominal wall, and disrupted muscle fiber formation, as indicated by altered Myosin heavy chain patterns.

View Article and Find Full Text PDF

In vertebrates, the lateral body wall muscle formation is thought to be initiated by direct outgrowth of the dermomyotomes resulting in the elongation of the hypaxial myotomes. This contrasts with the formation of the muscles of the girdle, limbs and intrinsic tongue muscles, which originate from long-range migrating progenitors. Previous work shows that the migration of these progenitors requires CXCR4 which is specifically expressed in the migrating cells, but not in the dermomyotome.

View Article and Find Full Text PDF

Objectives: Mesenchymal stem cells are viewed as the first choice in regenerative medicine. This study aimed to elucidate the influence of BM-MSCs transplantation on angiogenesis in a rat model of unilateral peripheral vascular disease.

Materials And Methods: Twenty-one rats were arbitrarily allocated into three groups (7/group).

View Article and Find Full Text PDF

Neural crest (NC) cells are a multipotent cell population with powerful migration ability during development. C-X-C chemokine receptor type 4 (CXCR4) is a chemokine receptor implicated to mediate NC migration in various species, whereas the underlying mechanism is not well documented yet. PAX3 is a critical transcription factor for the formation of neural crest and the migration and differentiation of NCs.

View Article and Find Full Text PDF

PAX3 skeletal muscle satellite cells retain long-term self-renewal and proliferation.

Muscle Nerve

November 2016

Animal Nutrition Institute, Sichuan Agricultural University, No. 46, Xinkang Road, Yaan, Sichuan, 625014, People's Republic of China.

Introduction: Different populations of satellite cells (SCs) have been identified, but their functional difference remains unclear.

Methods: We used cell-surface markers and paired box transcription factor 3 (Pax3)/paired box transcription factor 7 (Pax7) expression to separate SC populations. In addition, self-renewal, proliferation, and differentiation abilities of each population were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!