MUC4: encodes a large transmembrane mucin that is overexpressed in pancreatic adenocarcinomas. The molecular mechanisms responsible for that altered pattern of expression are unknown. TGF-beta, a pleiotropic cytokine, regulates numerous genes involved in pancreatic carcinogenesis via activation of the Smads proteins and MUC4 promoter is rich in Smad-binding elements. Our aim was to study whether the regulation of MUC4 expression by TGF-beta in pancreatic cancer cells was strictly dependent on Smad4 activity. Three pancreatic cancer cell lines, CAPAN-1 (MUC4+/Smad4-), CAPAN-2 (MUC4+/Smad4+) and PANC-1 (MUC4-/Smad4+), were used. By RT-PCR, transfection assays and immunohistochemistry, we show that (i) both MUC4 mRNA and apomucin expression are upregulated by TGF-beta, (ii) Smad2 positively cooperates with Smad4 to activate the promoter, (iii) activation of Smad4 by exogenous TGF-beta induces Smad4 binding to the promoter, (iv) Smad7 and c-ski both inhibit activation by Smad4. When Smad4 is mutated and inactive, TGF-beta activates MUC4 expression via MAPK, PI3K and PKA signaling pathways. Absence of expression in PANC-1 cells is due to histone deacetylation. Altogether, these results indicate that upregulation of MUC4 by TGF-beta is restricted to well-differentiated pancreatic cancer cells, and point out a novel mechanism for TGF-beta as a key molecule in targeting MUC4 overexpression in pancreatic adenocarcinomas.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1207769DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
12
muc4
8
tgf-beta
8
tgf-beta pancreatic
8
pancreatic carcinogenesis
8
pancreatic adenocarcinomas
8
muc4 expression
8
cancer cells
8
activation smad4
8
pancreatic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!