Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system.

J Exp Biol

Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.

Published: June 2004

Afferent responses to the fish's own electric organ discharge were explored in the electrosensory lobe of the mormyrid fish Gnathonemus petersii. In order to understand the neural encoding of natural sensory images, responses were examined while objects of different conductivities were placed at different positions along the skin of the fish, i.e. at different points within, and also outside, peripheral receptive fields. The presence of an object in the fish's self-generated electric field produces local modulation of transcutaneous current density. Measurement of the local electric organ discharge shows that object images formed at the electroreceptive sensory surface have an opposing center-surround, 'Mexican hat' profile. This is a pre-receptor phenomenon intrinsic to the physical nature of the sensory stimulus that takes place prior to neural lateral inhibition and is independent of such central inhibition. Stimulus intensity is encoded in the latency and number of action potentials in the response of primary afferent fibers. It is also reflected in changes in the amplitude and area of extracellular field potentials recorded in the deep granular layer of the electrosensory lobe. Since the object image consists of a redistribution of current density over the receptive surface, its presence is coded by change in the activity of receptors over an area much larger than the skin surface facing the object. We conclude that each receptor encodes information coming from the whole scene in a manner that may seem ambiguous when seen from a single point and that, in order to extract specific object features, the brain must process the electric image represented over the whole sensory surface.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.01053DOI Listing

Publication Analysis

Top Keywords

sensory images
8
primary afferent
8
electric organ
8
organ discharge
8
electrosensory lobe
8
current density
8
sensory surface
8
sensory
5
object
5
pre-receptor profile
4

Similar Publications

Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) dynamics, driven by sensory stimulation-induced neuronal activity, is crucial for maintaining homeostasis and clearing metabolic waste. However, it remains unclear whether such CSF flow is impaired in age-related neurodegenerative diseases of the visual system. This study addresses this gap by examining CSF flow during visual stimulation in glaucoma patients and healthy older adults using functional magnetic resonance imaging.

View Article and Find Full Text PDF

The complementary strengths of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have driven extensive research into integrating these two noninvasive modalities to better understand the neural mechanisms underlying cognitive, sensory, and motor functions. However, the precise neural patterns associated with motor functions, especially imagined movements, remain unclear. Specifically, the correlations between electrophysiological responses and hemodynamic activations during executed and imagined movements have not been fully elucidated at a whole-brain level.

View Article and Find Full Text PDF

Background Diffuse idiopathic skeletal hyperostosis (DISH) is an age-related condition involving abnormal ossification of soft tissues, including ligaments and joint capsules. Patients with DISH have an increased risk of fractures, especially in ankylosed spines, which increases susceptibility to spinal cord injury. This study aimed to explore the risk factors for neurological symptoms in patients with DISH-related fractures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!