Members of the p160 nuclear receptor coactivators interact with liganded nuclear receptors to enhance transcription of target genes. Here we identify a novel family of ankyrin repeats containing cofactors (ANCOs) that interact with the p160 coactivators. ANCO-1 binds to the conserved Per-Arnt-Sim (PAS) region of the p160 coactivators. It encodes a large nuclear protein with five ankyrin repeats, and parts of its sequences have been reported as nasopharyngeal carcinoma susceptibility protein and medulloblastoma antigen. Immunofluorescence staining reveals discrete nuclear foci of ANCO-1 that are distinct from known nuclear structures. Intriguingly, ANCO-1 also colocalizes and interacts with histone deacetylases. Transient reporter gene assay shows that ANCO-1 expression inhibits ligand-dependent transactivation by both steroid and nonsteroid nuclear receptors. Taken together, we have identified a novel family of ankyrin repeats containing cofactors that may recruit histone deacetylases to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M403997200 | DOI Listing |
J Am Heart Assoc
January 2025
Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan.
Background: Doxorubicin-induced cardiotoxicity is still an important medical problem associated with a high mortality rate in cancer survivors. p53 plays a key role in doxorubicin-induced cardiotoxicity. Diacylglycerol kinase ζ (Dgkζ), a 130-kDa enzyme abundant in cardiomyocytes, regulates the p53 protein expression level in neurons.
View Article and Find Full Text PDFFront Genet
December 2024
College of Agronomy, Qingdao Agricultural University, Qingdao, China.
Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance.
View Article and Find Full Text PDFCell Death Dis
December 2024
Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
The concept of Targeted Protein Degradation (TPD) has been introduced as an attractive alternative to the development of classical inhibitors. TPD can extend the range of proteins that can be pharmacologically targeted beyond the classical targets for small molecule inhibitors, as a binding pocket is required but its occupancy does not need to lead to inhibition. The method is based on either small molecules that simultaneously bind to a protein of interest and to a cellular E3 ligase and bring them in close proximity (molecular glue) or a bi-functional molecule synthesized from the chemical linkage of a target protein-specific small molecule and one that binds to an E3 ligase (Proteolysis Targeting Chimeras (PROTAC)).
View Article and Find Full Text PDFMol Neurobiol
December 2024
Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!