Quantitative PCR (Q-PCR) is a fast and efficient tool to quantify target genes. In eukaryotic cells, quantitative reverse transcription-PCR (Q-RT-PCR) is also used to quantify gene expression, with stably expressed housekeeping genes as standards. In bacteria, such stable expression of housekeeping genes does not occur, and the use of DNA standards leads to a broad underestimation. Therefore, an accurate quantification of RNA is feasible only by using appropriate RNA standards. We established and validated a Q-PCR method which enables the quantification of not only the number of copies of target genes (i.e., the number of bacterial cells) but also the number of RNA copies. The genes coding for InvA and the 16S rRNA of Salmonella enterica serovar Typhimurium were selected for the evaluation of the method. As DNA standards, amplified fragments of the target genes were used, whereas the same DNA standards were transcribed in vitro for the development of appropriate RNA standards. Salmonella cultures and environmental water samples inoculated with bacteria were then employed for the final testing. Both experimental approaches led to a sensitive, accurate, and reproducible quantification of the selected target genes and RNA molecules by Q-PCR and Q-RT-PCR. It is the first time that RNA standards have been successfully used for a precise quantification of the number of RNA molecules in prokaryotes. This demonstrates the potential of this approach for determining the presence and metabolic activity of pathogenic bacteria in environmental samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC427797PMC
http://dx.doi.org/10.1128/AEM.70.6.3618-3623.2004DOI Listing

Publication Analysis

Top Keywords

target genes
16
dna standards
12
rna standards
12
accurate quantification
8
rna
8
housekeeping genes
8
appropriate rna
8
quantification number
8
number rna
8
rna molecules
8

Similar Publications

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

Purpose: Renal medullary carcinoma (RMC) is a highly aggressive malignancy defined by the loss of the SMARCB1 tumor suppressor. It mainly affects young individuals of African descent with sickle cell trait, and it is resistant to conventional therapies used for other renal cell carcinomas. This study aimed to identify potential biomarkers for early detection and disease monitoring of RMC.

View Article and Find Full Text PDF

A novel ubiquitination-related gene signature for overall survival prediction in patients with liver hepatocellular carcinoma.

Discov Oncol

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Liver hepatocellular carcinoma (LIHC) is a highly heterogeneous disease, necessitating the discovery of novel biomarkers to enhance individualized treatment approaches. Recent research has shown the significant involvement of ubiquitin-related genes (UbRGs) in the progression of LIHC. However, the prognostic value of UbRGs in LIHC has not been investigated.

View Article and Find Full Text PDF

Comprehensive Analysis of Immune Characteristics of Fluorosis and Cuprotosis-Related Genes in Fluorosis Targeted Drugs.

Biol Trace Elem Res

January 2025

Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.

This study aims to investigate the role of cuprotosis in fluorosis and identify potential targeted drugs for its treatment. The GSE70719 and GSE195920 datasets were merged using the inSilicoMerging package. DEGs between the exposure and control groups were found using R software.

View Article and Find Full Text PDF

[Next generation sequencing (NGS)-based molecular panel analysis for metastatic prostate cancer: how often can we detect druggable mutations? : NGS for metastatic adenocarcinoma of the prostate].

Urologie

January 2025

Klinik für Urologie, Uro-Onkologie, roboter-assistierte und spezielle urologische Chirurgie, Uniklinik Köln, Kerpener Str. 62, 50927, Köln, Deutschland.

Introduction: Prostate cancer guidelines recommend molecular analysis of biomaterial following resistance to first-line systemic therapy in order to identify druggable mutations. We report on our results of molecular analysis of tissue specimens via next generation sequencing (NGS) in men with metastatic castration resistant prostate cancer (mCRPC).

Patients And Methods: In all, 311 mCRPC patients underwent NGS analysis from biopsy samples of progressive metastatic lesions or archival radical prostatectomy specimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!