Purpose: Developing myeloid cells are particularly sensitive to chemotherapy and ionizing radiation. Mature cells of the hematopoietic lineages, such as are found in the peripheral blood mononuclear cells (PBMCs), are much less sensitive for reasons that are not yet understood. Protecting the myeloid precursors from radiation or chemotherapy is an important goal.
Methods: We have used fluorescence microscopy to assess the ability of WR-1065, the active metabolite of amifostine (Ethyol), to protect cultured myeloid leukemic HL-60 cells or freshly isolated PBMCs from the induction of apoptosis by ionizing radiation or etoposide.
Results: WR-1065 greatly reduced the percentage of radiation-induced apoptosis in the p53 negative HL-60 cells 24 h after exposure to 8 Gy. WR-1065 also greatly reduced the percentage of HL-60 cells undergoing apoptosis 24 h after a 1-h exposure to 1 microM etoposide. The pan-caspase inhibitor ZVAD-fmk completely inhibited radiation-induced apoptosis in HL-60 cells when present for the first hour after exposure to radiation, but had no effect on cell survival. In contrast, neither WR-1065 nor ZVAD-fmk reduced the level of radiation-induced apoptosis in normal human PBMCs.
Conclusion: These results suggest that pro-apoptotic pathways are present in immature myeloid cells that can be selectively protected from radiation or chemotherapy-induced apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2004.01.046 | DOI Listing |
World J Oncol
February 2025
Department of Cell Biology and Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
Background: Neutrophil extracellular trap (NET) formation has been implicated as a pathogenic mechanism in both rheumatoid arthritis (RA) and interstitial lung disease (ILD). However, the role of NETs in RA-associated ILD (RA-ILD) and the mechanisms driving NET formation remain unclear. This study aimed to assess the involvement of NETs in RA-ILD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
High concentrations of neutrophil degranulation products in the plasma and thrombi are poor prognostic indicators in patients with acute ischemic stroke (AIS). This study aimed to identify candidate effectors capable of mediating neutrophil degranulation post-AIS, and to reveal their underlying epigenetic mechanisms. Microarrays and ChIP-seq were applied to analyze the neutrophils of patients with AIS.
View Article and Find Full Text PDFClin Epigenetics
January 2025
School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103-287, 41125, Modena, Italy.
The present study was aimed at revealing the metabolic changes that occurred in the cellular lipid pattern of acute and chronic myeloid leukaemia cells following treatment with cannabidiol (CBD). CBD is a non-psychoactive compound present in Cannabis sativa L., which has shown an antiproliferative action in these type of cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!