Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily that regulates target gene transcription in a ligand-dependent manner. The in vivo effects of lipopolysaccharide (LPS) on expression of PXR and its target gene cytochrome P450 3A (CYP3A) in mouse liver were investigated in this study. Mice were injected intraperitoneally with different doses of LPS (0.1-5.0 mg/kg). PXR and CYP3A11 mRNA levels were measured using reverse transcription polymerase chain reaction. Results indicate that LPS significantly inhibits the expression of PXR mRNA in a dose-dependent manner, followed by suppression of CYP3A11 mRNA in mouse liver. LPS also represses the upregulation of CYP3A11 mRNA levels and erythromycin N-demethylase (ERND) catalytic activity in mice pretreated with PXR ligands dexamethasone, rifampicin, mifepristone, and phenobarbital. LPS-induced downregulation of PXR and CYP3A11 mRNA in liver was significantly attenuated in mice pretreated with gadolinium chloride, a selective Kupffer cell toxicant. Pretreatment with a single dose of gadolinium chloride (10 mg/kg) also significantly attenuated LPS-induced downregulation of dexamethasone-, rifampicim-, mifepristone-, and phenobarbital-inducible, CYP3A11 mRNA expression and ERND activity in mouse liver. Furthermore, LPS-induced downregulation of PXR and CYP3A11 mRNA was significantly attenuated in mice pretreated with allopurinol, an inhibitor of xanthine oxidase, and diphenyleneiodonium chloride, an inhibitor of NADPH oxidase. Allopurinol and diphenyleneiodonium chloride pretreatment also attenuated the repressive effects of LPS on dexamethasone-, rifampicin-, mifepristone-, and phenobarbital-inducible CYP3A11 mRNA expression and ERND catalytic activity in mouse liver. However, aminoguanidine, a selective inhibitor of inducible nitric oxide synthase, has no effect on LPS-induced downregulation of PXR and CYP3A11 mRNA. Finally, LPS-induced downregulation of PXR and CYP3A11 mRNA was prevented in mice pretreated with either N-acetylcysteine or ascorbic acid. These antioxidants also prevented the repressive effects of LPS on dexamethasone-, rifampicin-, mifepristone-, and phenobarbital-inducible CYP3A11 mRNA expression and ERND catalytic activity in mouse liver. These results indicate that Kupffer cells contribute to LPS-induced downregulation of PXR and CYP3A in mouse liver. Reactive oxygen species, produced possibly by NADPH oxidase and perhaps by xanthine oxidase, are involved in LPS-induced downregulation of nuclear receptor PXR and its target gene CYP3A in mouse liver.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2004.03.021DOI Listing

Publication Analysis

Top Keywords

cyp3a11 mrna
40
mouse liver
32
lps-induced downregulation
28
pxr cyp3a11
20
downregulation pxr
20
target gene
16
cyp3a mouse
16
mice pretreated
16
nuclear receptor
12
ernd catalytic
12

Similar Publications

Loss of hepatocyte Usp53 protects mice from a form of xenobiotic-induced liver injury.

Biochim Biophys Acta Mol Basis Dis

December 2024

The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Shanghai Key Laboratory of Birth Defect, Shanghai 201102, China. Electronic address:

Background: Ubiquitin-specific protease 53 (USP53) deficiency is associated with familial intrahepatic cholestasis in which serum gamma-glutamyl transferase (GGT) activity is relatively low. However, how USP53 deficiency contributes to cholestasis is obscure. No animal model has been reported.

View Article and Find Full Text PDF

An oat fiber intervention for reducing PFAS body burden: A pilot study in male C57Bl/6 J mice.

Toxicol Appl Pharmacol

December 2024

Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts, Lowell, MA, USA.

Perfluoroalkyl substances (PFAS) are a major public health concern, in part because several PFAS have elimination half-lives on the order of years and are associated with adverse health outcomes. While PFAS can be transported into bile, their efficient reuptake by intestinal transporter proteins results in minimal fecal elimination. Here, we tested the hypothesis that consumption of oat β-glucan, a dietary supplement known to disrupt the enterohepatic recirculation of bile acids, will reduce PFAS body burdens.

View Article and Find Full Text PDF

Keemun black tea (KBT) is a luxurious traditional tea in China that has been commonly consumed because of its superior aroma and special taste. However, the risks remain unknown when KBT is used concomitantly with other drugs or food products. Therefore, we aimed to explore the effect of the tea polyphenols from KBT on the protein and mRNA levels of CYP450 and related mechanisms.

View Article and Find Full Text PDF

Investigating the Mechanisms of 15-PGDH Inhibitor SW033291 in Improving Type 2 Diabetes Mellitus: Insights from Metabolomics and Transcriptomics.

Metabolites

September 2024

Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China.

This study focused on exploring the effects of SW033291, an inhibitor of 15-hydroxyprostaglandin dehydrogenase, on type 2 diabetes mellitus (T2DM) mice from a comprehensive perspective. Studies have demonstrated that SW033291 benefits tissue repair, organ function, and muscle mass in elderly mice. Our recent investigation initially reported the beneficial effect of SW033291 on T2DM progression.

View Article and Find Full Text PDF

Pregnane X receptor (PXR) deficiency promotes hepatocarcinogenesis via induction of Akr1c18 expression and prostaglandin F (PGF) levels.

Biochem Pharmacol

July 2024

School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. Electronic address:

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, plays a critical role in the metabolism of endogenous and exogenous substances in the liver. Here, we investigate whether PXR plays a role in pathogenesis of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!