Deoxycytidine kinase (dCK) is a key enzyme in the deoxynucleoside salvage pathway and in the activation of numerous nucleoside analogues used in cancer and antiviral chemotherapy. Recent studies indicate that dCK activity might be regulated through reversible phosphorylation. Here, we report the effects of a large panel of protein kinase inhibitors on dCK activity in the B-leukemia cell line EHEB, both in basal conditions and in the presence of the nucleoside analogue 2-chloro-2'-deoxyadenosine (CdA) which induces activation of dCK. Except staurosporine and H-7 that significantly reduced the activation of dCK by CdA, no specific protein kinase inhibitor diminished basal dCK activity or its activation by CdA. In contrast, genistein, a general protein tyrosine kinase inhibitor, and AG-490, an inhibitor of JAK2 and JAK3, increased basal dCK activity more than two-fold. Two specific inhibitors of the MAPK/ERK pathway, PD-98059 and U-0126, also enhanced dCK activity. These data suggest that the JAK/MAPK pathway could be involved in the regulation of dCK. Moreover, we show that the activity of dCK, raised by CdA, can return to its initial level by treatment with protein phosphatase-2A (PP2A). Accordingly, dCK activity in intact cells increased upon incubation with okadaic acid (OA) at concentrations that should inhibit PP2A, but not protein phosphatase-1. Activation of dCK by protein kinase inhibitors and OA was also observed in CCRF-CEM cells and in chronic lymphocytic leukemia B-lymphocytes, suggesting a general mechanism of post-translational regulation of dCK, which could be exploited to enhance the activation of antileukemic nucleoside analogues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2004.02.031 | DOI Listing |
Immunology
February 2025
Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA.
Autoreactive, aberrantly activated lymphocytes that target myelin antigens in the central nervous system (CNS) are primary drivers of the autoimmune disease multiple sclerosis (MS). Proliferating cells including activated lymphocytes require deoxyribonucleoside triphosphates (dNTPs) for DNA replication. dNTPs can be synthesised via the de novo pathway from precursors such as glucose and amino acids or the deoxyribonucleoside salvage pathway from extracellular deoxyribonucleosides.
View Article and Find Full Text PDFCureus
October 2024
Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND.
BMC Pulm Med
October 2024
Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA.
Background: The Myositis Interstitial Lung Disease Nintedanib Trial (MINT) is a hybrid trial, which is enrolling patients both at local sites and remotely via a decentralised site. The trial will investigate the efficacy and safety of nintedanib in patients with progressive myositis-associated interstitial lung disease (MA-ILD).
Methods/design: MINT is an exploratory, prospective randomised placebo-controlled trial.
J Diabetes Sci Technol
November 2024
University of California San Francisco, San Francisco, CA, USA.
Nutrients
September 2024
Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico.
Background: Acute myeloid leukemia (AML) is a hematological neoplasm of rapid and progressive onset, and is the most common form of leukemia in adults. Chemoresistance to conventional treatments such as cytarabine (Ara-C) and daunorubicin is a main cause of relapse, recurrence, metastasis, and high mortality in AML patients. It is known that sodium caseinate (SC), a salt derived from casein, a milk protein, inhibits growth and induces apoptosis in acute myeloid leukemia cells but not in normal hematopoietic cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!