ELISPOT cell rescue.

J Immunol Methods

Gladstone Institute of Virology and Immunology, University of California, PO Box 419100, San Francisco, CA 94141-9100, USA.

Published: May 2004

The enzyme-linked immunospot (ELISPOT) assay is a highly sensitive and reproducible method for quantifying T cell-mediated immune responses, and has been used to measure antigen-specific responses post-vaccination. While there are several advantages of the ELISPOT assay for use in field settings for large-scale vaccination trials, blood draw volumes are often limited, and the number of antigen-specific responses that can be measured is constrained by the limited cell number. We reasoned that it should be possible to salvage and rescue viable cells from a completed ELISPOT assay post-incubation, to use for further experimentation. Here, we show that cells rescued from an ELISPOT plate after assay are viable, and may be used in a second cytokine-producing assay, in a proliferation assay, or to provide a source of DNA for genetic studies such as human leukocyte antigen (HLA) typing. Rescue of cells after an ELISPOT assay will be particularly useful for increasing sample utility and maximizing data collection from T cell assays in vaccine trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2004.03.006DOI Listing

Publication Analysis

Top Keywords

elispot assay
16
antigen-specific responses
8
assay
7
elispot
6
elispot cell
4
cell rescue
4
rescue enzyme-linked
4
enzyme-linked immunospot
4
immunospot elispot
4
assay highly
4

Similar Publications

VACCIMEL is a therapeutic cancer vaccine composed of four irradiated allogeneic human melanoma cell lines rationally selected to cover a wide range of melanoma tumor-associated antigens (TAA). We previously demonstrated that vaccination in the adjuvant setting prolonged the distant-metastasis-free survival of cutaneous melanoma patients and that T cells reactive to TAA and the patient's private neoantigens increased during treatment. However, immune responses directed to vaccine antigens that may arise from VACCIMEL's somatic mutations and human polymorphisms remain unexplored.

View Article and Find Full Text PDF

Introduction: Advanced age is a primary risk factor for many chronic diseases and conditions; however, age-related immune dysregulation is not well understood. Animal models, particularly those that resemble human age-related physiological changes, are needed to better understand immunosenescence and to improve health outcomes. Here, we explore the utility of the olive baboon (Papio anubis) in studying age-related changes to the immune system and understanding mechanisms of immunosenescence.

View Article and Find Full Text PDF

Type 1 Diabetes (T1D) is an autoimmune disease mediated by autoreactive T cells. Our studies indicate that CD4 T cells reactive to Hybrid Insulin Peptides (HIPs) play a critical role in T cell-mediated beta-cell destruction. We have shown that HIPs form in human islets between fragments of the C-peptide and cleavage products of secretory granule proteins.

View Article and Find Full Text PDF

Human HKU1-reactive CD4 T cells are enriched for cytolytic potential that persists in older adults.

J Infect Dis

January 2025

David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.

The emergence of SARS-CoV-2 increased interest in cellular immunity established by infections with human coronaviruses (HCoVs). Using PBMC from a cohort of human subjects collected prior to 2019, we assessed the abundance and phenotype of these CD4 T cells using cytokine Elispot assays. Unexpectedly, cytotoxic potential was uniquely enriched amongst HKU1-reactive CD4 T cells, as measured by quantification of granzyme producing cells.

View Article and Find Full Text PDF

Background/objectives: New SARS-CoV-2 variants are continuously emerging, making it essential to assess the efficacy of vaccine-induced immune protection. Limited information is available regarding T cell responses to BA.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!