Isolated blood eosinophils are routinely used to study eosinophil activation mechanisms. However, as revealed by ultrastructural analysis, different isolation protocols may yield purified eosinophils with marked variability in granule electron density. In this study, using eosinophil peroxidase (EPO) histochemistry and transmission electron microscopy (TEM), we have compared the morphology of eosinophils in immediately fixed whole blood (to represent a morphological baseline) with isolated eosinophils purified by a number of protocols. Eosinophils in whole blood contained intact specific secondary granules of which a few exhibited marginal coarsening of matrix electron density (4% (95% CI: 2 to 7) altered granules per eosinophil). By contrast, eosinophils purified according to standard protocols, which included erythrocyte lysis with either ammonium chloride or distilled water, showed moderate to extensive loss in density of secondary granule core and/or matrix (NH4Cl: 62% (95% CI: 58 to 66); dH2O: 37% (95% CI: 30 to 44) altered granules). Stepwise analysis of eosinophils during the cell separation processes indicated that the granule abnormalities seen following erythrocyte lysis were further increased following immunomagnetic separation. However, when erythrocyte lysis was omitted, by use of a two-layered Percoll gradient (1.076 g/ml/1.088 g/ml) to which diluted whole blood was applied directly, eosinophils with minimal granule abnormalities (11% (95%CI: 9 to 13) altered granules) could be obtained after immunomagnetic separation. In conclusion, to obtain eosinophils with granule morphology more closely resembling the whole blood baseline phenotype, erythrocyte lysis should be avoided when separating eosinophils from human blood. Thus it will be possible to study in vitro the early transformation of resting eosinophils into the degranulating phenotype found in diseased tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jim.2004.02.008 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmacology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania.
Background: Lipid vesicles, especially those utilizing biocompatible materials like chitosan (CHIT), hold significant promise for enhancing the stability and release characteristics of drugs such as indomethacin (IND), effectively overcoming the drawbacks associated with conventional drug formulations.
Objectives: This study seeks to develop and characterize novel lipid vesicles composed of phosphatidylcholine and CHIT that encapsulate indomethacin (IND-ves), as well as to evaluate their in vitro hemocompatibility.
Methods: The systems encapsulating IND were prepared using a molecular droplet self-assembly technique, involving the dissolution of lipids, cholesterol, and indomethacin in ethanol, followed by sonication and the gradual incorporation of a CHIT solution to form stable vesicular structures.
Biochem Biophys Res Commun
January 2025
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India. Electronic address:
Bacterial infections significantly delay the physiological wound healing process and can cause further damage to the wound region. In the current work, we aim to design titanium dioxide nanoparticles (TiO NPs) incorporated with chitosan (Chi) and poly (vinyl alcohol) (PVA) film using the casting method and to study their potential for faster wound healing. The prepared TiO NPs were analyzed for physicochemical properties, and TEM results showed an average particle size of 39.
View Article and Find Full Text PDFInt J Antimicrob Agents
January 2025
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:
Front Microbiol
November 2024
Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Introduction: Dental caries, caused by oral microbial pathogens, are a global health concern, further exacerbated by the presence of methicillin-resistant (MRSA). Bioactive proteins and peptides (BAPs) exhibit potent antimicrobial properties, targeting multiple cellular mechanisms within pathogens, reducing the likelihood of resistance development. Given the antimicrobial potential of BAPs, this study aimed to compare the efficacy of BAPs extracted from cultivated (, PoC) and wild (, PoW) mushrooms against pathogens responsible for dental caries.
View Article and Find Full Text PDFMar Drugs
November 2024
Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!