Huangbai (Phellodendron spec.) and Qianniuzi (Pharbitis spec.) are two traditional Chinese medical herbs used for anti-diarrheal and laxative agents, respectively. Ethanol and water extracts of these two herbs were prepared and effects of the extracts on ion transport of the rat intestinal epithelia were studied. For measuring changes of the short circuit current across the epithelia, the rat intestinal epithelia were mounted in the Ussing chamber and attached with voltage/current clamp. The intestinal epithelia were firstly activated by serosal administration of 5 microM forskolin. As current raised and being stable, extracts of these herbs were added, respectively, and changes in the short circuit current were recorded. Ethanol extract of Huangbai attenuated the current increment; on the contrary, ethanol extract of Qianniuzi augmented the current increment additionally. Water extracts of the two herbs showed minor effects on the current in comparison to ethanol extracts. The results provide evidences to reveal the pharmacological mechanism of the two Chinese medical herbs on the intestinal tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2004.02.024 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Institute for Molecular Medicine, Health and Medical University Potsdam, Potsdam, Germany.
Ca and Mg are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca and Mg can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca and Mg from supplements is significantly lower than that from milk products.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Chemistry, Simon Fraser University Burnaby British Columbia Canada. Electronic address:
Prostaglandin E receptor type 4 (EP4) agonists have been shown to be effective in treating experimental ulcerative colitis (UC) in animals and in human clinical trials, but their development has been impeded by unacceptable systemic side effects. In this study, a series of methylene phosphate prodrugs of a highly potent and selective prostaglandin EP4 receptor agonist were designed to target and remain localized in the gastrointestinal (GI) tract after either oral or rectal instillation. The prodrugs were designed to be converted to liberate active EP4 agonist by intestinal alkaline phosphate (IAP), a ubiquitous enzyme found at the luminal of the intestinal wall thus exposing the colon epithelial barrier while reducing systemic exposure to the active agonist.
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Division of Pathology.
Biomater Sci
December 2024
National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China.
Oral protein drugs' delivery faces challenges due to multiple absorption barriers for macromolecules. Co-administration with permeation enhancers and encapsulation in nano-carriers are two promising strategies to enhance their oral absorption. Herein, the poly(lactic--glycolic acid) nanoparticles (PLGA NPs) are decorated with polyethylene glycol (PEG) and a traditional Chinese medicine-derived permeation enhancer borneol (BO) for oral insulin delivery.
View Article and Find Full Text PDFPLoS One
December 2024
Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand.
Secretory diarrhea, a major global health concern, particularly among young children, is often characterized by excessive chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) channel. Nornidulin, a fungus-derived natural product from Aspergillus unguis, has previously been shown to inhibit cAMP-induced Cl- secretion in T84 cells (human intestinal cell lines). However, the cellular mechanism of nornidulin in inhibiting cAMP-induced Cl- secretion and its anti-secretory efficacy is still unknown especially in a human colonoid model, a preclinical model recapitulating intestinal physiology in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!