We have characterized the kinetic and thermodynamic consequences of adenine nucleotide interaction with the low-affinity and high-affinity nucleotide-binding sites in free SecA. ATP binds to the hydrolytically active high-affinity site approximately 3-fold more slowly than ADP when SecA is in its conformational ground state, suggesting that ATP binding probably occurs when the enzyme is in another conformational state during the productive ATPase/transport cycle. The steady-state ATP hydrolysis rate is equivalent to the rate of ADP release from the high-affinity site under a number of conditions, indicating that this process is the rate-limiting step in the ATPase cycle of the free enzyme. Because efficient protein translocation requires at least a 100-fold acceleration in the ATPase rate, the rate-limiting process of ADP release from the high-affinity site is likely to play a controlling role in the conformational reaction cycle of SecA. This release process involves a large enthalpy of activation, suggesting that it involves a protein conformational change, and two observations indicate that this conformational change is different from the well-characterized endothermic conformational transition believed to gate the binding of SecA to SecYEG. First, nucleotide binding to the low-affinity site strongly inhibits the endothermic transition but does not reduce the rate of ADP release. Second, removal of Mg(2+) from an allosteric binding site on SecA does not perturb the endothermic transition but produces a 10-fold acceleration in the rate of ADP release. These divergent effects suggest that a specialized conformational transition mediates the rate-limiting ADP-release process in SecA. Finally, ADP, 2'-O-(N-methylanthraniloyl)-adenosine-5'-diphosphate (MANT-ADP), and adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S) bind with similar affinities to the high-affinity site and also to the low-affinity site as inferred from their consistent effects in inhibiting the endothermic transition. In contrast, adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) shows 100-fold weaker affinity than ADP for the high-affinity site and no detectable interaction with the low-affinity site at concentrations up to 1 mM, suggesting that this nonhydrolyzable analogue may not be a faithful mimic of ATP in its interactions with SecA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0357208 | DOI Listing |
BMC Biol
January 2025
School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
Background: Poliovirus receptor (PVR) and its receptor system, including TIGIT, CD226, and CD96, play a pivotal role in orchestrating tumor immune evasion. Upon engagement with PVR on tumor cells, CD96 exerts inhibitory effects on the function of T cells and NK cells, thereby fostering tumor immune evasion. Therefore, screening of immune checkpoint inhibitors (ICIs) targeting the CD96/PVR pathway will provide promising candidates for tumor immunotherapy.
View Article and Find Full Text PDFBiochem J
January 2025
North Carolina State University, Raleigh, North Carolina, United States.
CtfAB from the extremely thermophilic bacterium, Thermosipho melanesiensis, has been used for in vivo acetone production up to 70°C. This enzyme has tentatively been identified as the rate-limiting step, due to its relatively low binding affinity for acetate. However, existing kinetic and mechanistic studies on this enzyme are insufficient to evaluate this hypothesis.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan.
SARS-CoV-2-related proteins, ACE2 and TMPRSS2, are determinants of SARS-CoV-2 infection. Although these proteins are expressed in oral-related tissues, their expression patterns and modulatory mechanisms in the salivary glands remain unknown. We herein showed that full-length ACE2, which has both a fully functional enzyme catalytic site and high-affinity SARS-CoV-2 spike S1-binding sites, was more highly expressed in salivary glands than in oral mucosal epithelial cells and the lungs.
View Article and Find Full Text PDFBioorg Chem
January 2025
Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina. Electronic address:
The search for novel cholinesterase inhibitors is essential for advancing treatments for neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we employed the Rosetta pepspec module, originally developed for designing peptides targeting protein-protein interactions, to design de novo peptides targeting the peripheral aromatic site (PAS) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). A total of nine peptides were designed for human AChE (hAChE), T.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!