Spinal excitation and inhibition decrease as humans age.

Can J Physiol Pharmacol

Centre for Neuroscience, University of Alberta, Edmonton, Canada.

Published: April 2004

Although changes in the soleus H-reflex (an electrical analog of the tendon jerk) with age have been examined in a number of studies, some controversy remains. Also, the effect of age on inhibitory reflexes has received little attention. The purpose of this paper was to examine some excitatory and inhibitory reflexes systematically in healthy human subjects having a wide range of ages. We confirmed that both the maximum H-reflex (Hmax) and the maximum M-wave (Mmax) (from direct stimulation of motor axons) decrease gradually with age. The decrease in Hmax was larger so the Hmax/Mmax ratio decreased dramatically with age. Interestingly, the modulation of the H-reflex during walking was essentially the same at all ages, suggesting that the pathways that modulate the H-reflex amplitude during walking are relatively well preserved during the aging process. We showed for the first time that the short-latency, reciprocal inhibitory pathways from the common peroneal nerve to soleus muscle and from the tibial nerve to the tibialis anterior muscle also decreased with age, when measured as a depression of ongoing voluntary activity. These results suggest that there may be a general decrease in excitability of spinal pathways with age. Thus, the use of age-matched controls is particularly important in assessing abnormalities resulting from disorders that occur primarily in the elderly.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y04-017DOI Listing

Publication Analysis

Top Keywords

inhibitory reflexes
8
age
7
spinal excitation
4
excitation inhibition
4
decrease
4
inhibition decrease
4
decrease humans
4
humans age
4
age changes
4
changes soleus
4

Similar Publications

Rhythmic motor behaviors are generated by neural networks termed central pattern generators (CPGs). Although locomotor CPGs have been extensively characterized, it remains unknown how the neuronal populations composing them interact to generate adaptive rhythms. We explored the non-linear cooperation dynamics among the three main populations of ipsilaterally projecting spinal CPG neurons - V1, V2a, V2b neurons - in scratch reflex rhythmogenesis.

View Article and Find Full Text PDF

The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.

View Article and Find Full Text PDF

Post-stroke spasticity (PSS), characterized by a velocity-dependent increase in muscle tone and exaggerated reflexes, affects a significant portion of stroke patients and presents a substantial obstacle to post-stroke rehabilitation. Effective management and treatment for PSS remains a significant clinical challenge in the interdisciplinary aspect depending on the understanding of its etiologies and pathophysiology. We systematically review the relevant literature and provide the main pathogenic hypotheses: alterations in the balance of excitatory and inhibitory inputs to the descending pathway or the spinal circuit, which are secondary to cortical and subcortical ischemic or hemorrhagic injury, lead to disinhibition of the stretch reflex and increased muscle tone.

View Article and Find Full Text PDF

Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.

View Article and Find Full Text PDF

Objectives: Cervical vestibular evoked myogenic potentials (cVEMPs) reflect saccular stimulation that results in an inhibitory muscle reflex recorded over the sternocleidomastoid muscle. These responses are utilized to study basic vestibular functions and are also applied clinically. Traditionally, cVEMPs have utilized transient stimuli such as clicks and tonebursts to evoke onset responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!