Ring D-modified gibberellin (GA) A5 and A20 derivatives are structurally similar to GA20 and GA9 (the precursors to growth-active GA1 and GA4) and, when applied to higher plants, especially grasses, can reduce shoot growth with concomitant reductions in levels of growth-active GAs and increases in levels of their immediate 3-deoxy precursors. The recombinant Arabidopsis GA 3beta-hydroxylase (AtGA3ox1) protein was used in vitro to test a number of ring D-modified GA structures as possible inhibitors of AtGA3ox1. This fusion protein was able to 3beta-hydroxylate the 3-deoxy GAs, GA9 and GA20, to GA4 and GA1, respectively, and convert the 2,3-didehydro GA, GA5, to its 2,3-epoxide, GA6. Michaelis-Menten constant (Km) values of 1.25 and 10 microM, respectively, were obtained for the GA9 and GA20 conversions. We utilized the enzyme's ability to convert GA20 to GA1 in order to test the efficacy of GA5, 16,17-dihydro GA5 (dihydro GA5), and a number of other ring D-modified GAs as inhibitors of AtGA3ox activity. For the exo-isomer of dihydro GA5, inhibition increased with the dose of dihydro GA5, with Lineweaver-Burk plots showing that dihydro GA5 changed only the Km of the enzyme reaction, not the V(max), giving a dissociation constant of the enzyme-inhibitor complex (Ki) of 70 microM. Other ring D-modified GA derivatives showed similar inhibitory effects on GA1 production, with 16,17-dihydro GA20-13-acetate being the most effective inhibitor. This behavior is consistent with dihydro GA5, at least, functioning as a competitive substrate inhibitor of AtGA3ox1. Finally, the recombinant AtGA3ox1 fusion protein may be a useful screening tool for other effective 3beta-hydroxylase inhibitors, including naturally occurring ones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514134 | PMC |
http://dx.doi.org/10.1104/pp.104.041509 | DOI Listing |
Mol Plant
March 2008
CSIRO, Plant Industry, Canberra, ACT 2600, Australia.
Gibberellins (GAs) cause dramatic increases in plant height and a genetic block in the synthesis of GA(1) explains the dwarfing of Mendel's pea. For flowering, it is GA(5) which is important in the long-day (LD) responsive grass, Lolium. As we show here, GA(1) and GA(4) are restricted in their effectiveness for flowering because they are deactivated by C-2 hydroxylation below the shoot apex.
View Article and Find Full Text PDFPlant Physiol
June 2004
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
Ring D-modified gibberellin (GA) A5 and A20 derivatives are structurally similar to GA20 and GA9 (the precursors to growth-active GA1 and GA4) and, when applied to higher plants, especially grasses, can reduce shoot growth with concomitant reductions in levels of growth-active GAs and increases in levels of their immediate 3-deoxy precursors. The recombinant Arabidopsis GA 3beta-hydroxylase (AtGA3ox1) protein was used in vitro to test a number of ring D-modified GA structures as possible inhibitors of AtGA3ox1. This fusion protein was able to 3beta-hydroxylate the 3-deoxy GAs, GA9 and GA20, to GA4 and GA1, respectively, and convert the 2,3-didehydro GA, GA5, to its 2,3-epoxide, GA6.
View Article and Find Full Text PDFPhysiol Plant
February 2004
CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
Some gibberellin (GA) analogues, especially with C-16,17 modifications of GA(5), can inhibit growth of plants apparently by acting as competitors with the endogenous substrate of GA biosynthetic enzymes. Here, we directly confirm the competitive action of GA derivatives but also show that some analogues may retain significant bioactivity. A recombinant 3-oxidase from pea, which converts GA(20) to bioactive GA(1), was inhibited by GA(5), and 16,17-dihydro-GA(5) derivatives, especially if the C-17 alkyl chain length was increased by up to three carbons or if the C-13 hydroxyl was acetylated.
View Article and Find Full Text PDFAnnu Rev Plant Physiol Plant Mol Biol
June 2000
BASF Agricultural Center, 67114 Limburgerhof, Germany; e-mail:
Plant growth retardants are applied in agronomic and horticultural crops to reduce unwanted longitudinal shoot growth without lowering plant productivity. Most growth retardants act by inhibiting gibberellin (GA) biosynthesis. To date, four different types of such inhibitors are known: (a) Onium compounds, such as chlormequat chloride, mepiquat chloride, chlorphonium, and AMO-1618, which block the cyclases copalyl-diphosphate synthase and ent-kaurene synthase involved in the early steps of GA metabolism.
View Article and Find Full Text PDFPlant Cell Rep
January 2003
Department of Botany-SCB, University of Parana, C.P. 19031, 81531-970, Curitiba, PR, Brazil.
Gibberellins (GAs) A(1), A(3), A(4) and A(7), all 3beta-hydroxylated, growth-active GAs, significantly inhibited shoot elongation and the formation of nodes in in vitro-grown Hancornia speciosa, as did GA(20), a 3-deoxy precursor of GA(1). Ancymidol, an early-stage inhibitor of GA biosynthesis, significantly retarded shoot elongation without affecting the formation of nodes. Co-application of ancymidol and GA(1 )did not overcome the ancymidol-induced growth retardation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!