Physiological characterization of human ovarian cancer cells in a rat model of intraperitoneal antineoplastic therapy.

J Appl Physiol (1985)

Division of Nephrology, Dept. of Medicine, Univ. of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA.

Published: October 2004

Destruction of cancer cells by therapies directed against new molecular targets requires their effective delivery to the tumor. To study diffusion and convection of intraperitoneal (ip) therapy to ip tumors, we established a new athymic rat (RNU) model with ovarian tumor cells (SKOV3 and OVCAR3) implanted in the abdominal wall. The model simulates metastatic tumor and facilitates the measurement of physiological parameters that govern transport forces. CD31 immunohistochemistry revealed unique patterns of angiogenesis, with a tissue-averaged vascular volume of approximately 0.01 ml/g for each tumor. The extracellular volume (SKOV3: 0.54 +/- 0.11 ml/g, n=5; OVCAR3: 0.61 +/- 0.03, n=5) was over twice that of the adjacent normal muscle (0.22 +/- 0.06 ml/g, n=5). Intravenous-injected antibody tumor clearance was two to three times that of muscle. Interstitial pressures were higher than normal tissue with a median of 10-15 mmHg. Quantitative autoradiography of frozen tissue slices from rats exposed to ip solutions containing [14C]mannitol or 125I-immunoglobulin G (trastuzumab) was performed to determine transport of small and large molecules. With ip pressure of 0-6 mmHg, both mannitol and immunoglobulin G displayed steep concentration profiles close to the tumor surface with limited penetration deeper within the tumor tissue; antibody penetration was significantly affected by ip pressure. These results demonstrated effects of molecular size, ip pressure, the limited but highly permeable tumor vasculature, and the expanded interstitium on drug penetration from the peritoneal cavity. In conclusion, we have characterized physical and chemical parameters that determine transport of therapeutic agents in our unique tumor-bearing rat model.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00305.2004DOI Listing

Publication Analysis

Top Keywords

cancer cells
8
rat model
8
tumor
8
ml/g n=5
8
determine transport
8
physiological characterization
4
characterization human
4
human ovarian
4
ovarian cancer
4
cells rat
4

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!