In clinical studies, multiple superiority/equivalence testing procedures can be applied to classify a new treatment as superior, equivalent (same therapeutic effect), or inferior to each set of standard treatments. Previous stepwise approaches (Dunnett and Tamhane, 1997, Statistics in Medicine16, 2489-2506; Kwong, 2001, Journal of Statistical Planning and Inference 97, 359-366) are only appropriate for balanced designs. Unfortunately, the construction of similar tests for unbalanced designs is far more complex, with two major difficulties: (i) the ordering of test statistics for superiority may not be the same as the ordering of test statistics for equivalence; and (ii) the correlation structure of the test statistics is not equi-correlated but product-correlated. In this article, we seek to develop a two-stage testing procedure for unbalanced designs, which are very popular in clinical experiments. This procedure is a combination of step-up and single-step testing procedures, while the familywise error rate is proved to be controlled at a designated level. Furthermore, a simulation study is conducted to compare the average powers of the proposed procedure to those of the single-step procedure. In addition, a clinical example is provided to illustrate the application of the new procedure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.0006-341X.2004.00194.x | DOI Listing |
PLoS One
January 2025
Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
Electroporation and electrofusion are efficient methods, which have been widely used in different areas of biotechnology and medicine. Pulse strength and width, as an external condition, play an important role in the process of these methods. However, comparatively little work has been done to explore the effects of pulsed electric field parameters on electroporation and electrofusion.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150080, China.
The hemispherical resonator gyroscope is a gyroscope based on the principle of Coriolis vibration, widely used in inertial measurement systems of spacecraft. This article decomposes the gyroscope into two parts: the resonator shell and the gyroscope head, establishes the energy dissipation mechanism of the gyroscope, and conducts experimental verification. Firstly, based on the working principle of the gyroscope, a mechanical analysis model of the hemispherical resonator gyroscope head with a resonator spherical shell containing quality defects under second-order vibration state was established.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd., Hangzhou 310051, China.
This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.
View Article and Find Full Text PDFHeliyon
December 2024
Computer Science & Engineering Department, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (Technological University of Madhya Pradesh), Bhopal, Madhya Pradesh, India.
A smart city is deemed smart enough because it has the capability to make decisions on its own. Artificial intelligence needs a lot of data from the physical world to make correct decisions. IoT sensor devices collect data from the surroundings, which is further used for predictive analytics.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency excitations in a transmission line network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!