Ribosome-Inactivating Proteins (RIPs) are enzymes that trigger the catalytic inactivation of ribosomes and other substrates. They are present in a large number of plants and have been found also in fungi, algae and bacteria. RIPs are currently classified as type 1, those formed by a single polypeptide chain with the enzymatic activity, and type 2, those formed by 2 types of chains, i.e. A chains equivalent to a type 1 RIPs and B chains with lectin activity. Type 2 RIPs usually contain the formulae A-B, (A-B)2 and less frequent (A-B)4 and polymeric forms of type 2 RIPs lectins. RIPs are broadly distributed in plants, and are present also in fungi, bacteria, at least in one alga; recently RIP-type activity has been described in mammalian tissues. The highest number of RIPs has been found in Caryophyllaceae, Sambucaceae, Cucurbitaceae, Euphorbiaceae, Phytolaccaceae and Poaceae. However there are no systematic screening studies to allow generalisations about occurrence. The most known activity of RIPs is the translational inhibitory activity, which seems a consequence of a N-glycosidase on the 28 S rRNA of the eukaryotic ribosome that triggers the split of the A(4324) (or an equivalent base in other ribosomes), which is key for translation. This activity seems to be part of a general adenine polynucleotide glycosylase able to act on several substrates other than ribosomes, such as tRNA, mRNA, viral RNA and DNA. Other enzymatic activities found in RIPs are lipase, chitinase and superoxide dismutase. RIPs are phylogenetically related. In general RIPs from close families share good amino acid homologies. Type 1 RIPs and the A chains of type 2 RIPs from Magnoliopsida (dicotyledons) are closely related. RIPs from Liliopsida (monocotyledons) are at the same time closely related and distant from Magnoliopsida. Concerning the biological roles played by RIPs there are several hypotheses, but the current belief is that they could play significant roles in the antipathogenic (viruses and fungi), stress and senescence responses. In addition, roles as antifeedant and storage proteins have been also proposed. Future research will approach the potential biological roles played by RIPs and their use as toxic effectors in the construction of immunotoxins and conjugates for target therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389557043403891 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Mechanical Industrial and Energy Systems, College of Engineering and Technology (AIC), University of Sargodha, Sargodha, Pakistan.
This painless method allows drugs to penetrate the outer skin layer, offering several advantages over alternative administration routes, including ease of use and the ability to bypass enterohepatic circulation. Among transdermal drug delivery systems (TDDS), microneedle patches (MNPs) are emerging as an innovative approach for minimally invasive drug delivery, enhancing the skin permeation of substances ranging from macro to micro sizes. This study explores dissolvable microneedle patches (dMNPs) as a novel method to improve the systemic delivery of empagliflozin, an SGLT-2 inhibitor, commonly used to manage type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFArch Toxicol
December 2024
Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, #408, 4th Floor, Warangal, 506004, India.
Shiga toxin is the leading cause of food poisoning in the world. It is structurally similar to the plant type II ribosome-inactivating proteins (RIPs) and retains N-glycosidase activity. It acts specifically by depurinating the specific adenine A4605 of human 28S rRNA, ultimately inhibiting translation.
View Article and Find Full Text PDFJ Biomol Struct Dyn
October 2024
Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, India.
Ribosome Inactivating Proteins (RIPs) act by irreversibly depurinating the 28S rRNA ricin-sarcin loop (SRL) of the eukaryotic ribosome resulting in protein synthesis inhibition. In general, they consist of two variants: Type I which is single chained (∼30 kDa), and Type II, a more toxic variant which is a Type I N-glycosidase chain covalently linked to a lectin chain. These proteins are believed to play a pivotal role in defence mechanisms.
View Article and Find Full Text PDFInt J Biol Macromol
September 2024
Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy. Electronic address:
SARS-CoV-2 pandemic clearly demonstrated the lack of preparation against novel and emerging viral diseases. This prompted an enormous effort to identify antivirals to curb viral spread and counteract future pandemics. Ribosome Inactivating Proteins (RIPs) and Ribotoxin-Like Proteins (RL-Ps) are toxin enzymes isolated from edible plants and mushrooms, both able to inactivate protein biosynthesis.
View Article and Find Full Text PDFFront Plant Sci
August 2024
Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
Ribosome-inactivating proteins (RIPs) are plant enzymes that target the rRNA. The cytoplasmic RIP, called OsRIP1, plays a crucial role in regulating jasmonate, a key plant hormone. Understanding the role of OsRIP1 can provide insights into enhancing stress tolerance and optimizing growth of rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!