Purpose: The aim of this study was to characterize the influence of pH and NaCl concentration on the transdermal iontophoretic transport of the dopamine receptor agonist rotigotine across human stratum corneum (HSC).

Methods: Rotigotine transport was studied in vitro in side by side diffusion cells according to the following protocol: 6 h of passive diffusion, 9 h of iontophoresis, and 5 h of passive diffusion. A current density of 0.5 mA cm(-2) was used. The influence of donor phase pH (4, 5, and 6) and different concentrations of NaCl (0.07 and 0.14 M) on rotigotine iontophoretic flux were examined. The acceptor phase was phosphate-buffered saline (PBS) at pH 7.4 except in one series of experiments aimed to study the effects of rotigotine solubility on its iontophoretic transport. In this study, PBS at pH 6.2 was used. In separate studies. 14C-mannitol was used as a marker to determine the role of electro-osmosis during iontophoresis.

Results: The estimated iontophoretic steady-state flux (Flux(ss)) of rotigotine was influenced by the pH of the donor solution. At a drug donor concentration of 0.5 mg ml(-1), the iontophoretic flux was 30.0 +/- 4.2 nmol cm(-2) h(-1) at pH 6 vs. 22.7 +/- 5.5 nmol cm(-2) h(-1) at pH 5. However, when the donor concentration was increased to 1.4 mg ml(-1), no significant difference in iontophoretic rotigotine transport was observed between pH 5 and 6. Increase of NaCl concentration from 0.07 M to 0.14 M resulted in a decrease of the rotigotine Flux(ss) from 22.7 +/- 5.5 nmol cm(-2) h(-1) to 14.1 +/- 4.9 nmol cm(-2) h(-1). The contribution of electro-osmosis was estimated less than 17%. Probably due to the lipophilic character of the drug, impeding the partitioning of rotigotine from HSC to the acceptor compartment, steady-state transport was not achieved during 9 h of iontophoresis.

Conclusions: Both pH and NaCl concentration of the donor phase are crucial on the iontophoretic transport of rotigotine. Electro-repulsion is the main mechanism of the iontophoretic transport of rotigotine.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:pham.0000026438.57787.10DOI Listing

Publication Analysis

Top Keywords

nacl concentration
16
iontophoretic transport
16
+/- nmol
16
nmol cm-2
16
cm-2 h-1
16
rotigotine
11
rotigotine human
8
human stratum
8
stratum corneum
8
influence nacl
8

Similar Publications

In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.

View Article and Find Full Text PDF

Impact of a trace mineral injection at weaning on growth, behavior, and inflammatory, antioxidant, and immune responses of beef calves.

Transl Anim Sci

December 2024

Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79074-460, Brazil.

Two experiments evaluated the effects of an injectable trace mineral (ITM) solution at weaning on trace mineral (TM) status, inflammatory and antioxidant responses, grazing behavior, response to vaccination, and growth of beef calves. Experiment 1 used 86 Nellore calves (40 females and 46 males; body weight [BW] = 198 ± 30.8 kg; 8 ± 1 mo of age) weaned (day 0) and assigned into one of two treatments: saline (0.

View Article and Find Full Text PDF

Purpose: This study explored how exogenous silicon (Si) affects growth and salt resistance in maize.

Methods: The maize was cultivated in sand-filled pots, incorporating varied silicon and salt stress (NaCl) treatments. Silicon was applied at 0, 2, 4, 6, and 8 mM, and salt stress was induced using 0, 60 and120 mM concentrations.

View Article and Find Full Text PDF

NH release during the snow evaporation process in typical cities in Northeast China.

Sci Rep

January 2025

Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, No.5088 Xincheng Road, Changchun, 130118, Jilin Province, China.

NH is the most important alkaline gas in the atmosphere and functions as a precursor to secondary ammonium salts. Therefore, identifying its sources and quantifying its emissions is imperative. NH represents a principal component of atmospheric particulate pollutants.

View Article and Find Full Text PDF

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!